Acute intoxication with large ammonia doses leads to activation of NMDA receptors in the brain, resulting in oxidative stress and disturbance of mitochondrial function. Altered mitochondrial function is a crucial step in some mechanisms of cellular apoptosis. This study assesses whether ammonia intoxication in vivo leads to induction of apoptotic markers such as permeability transition pore (PTP) formation, caspase-3, and caspase-9 activation, changes in p53 protein, or cytochrome c release. Acute ammonia intoxication did not affect caspase-9 or caspase-3 activities. The mitochondrial membrane potential also remained unaltered in non-synaptic brain mitochondria after injection of ammonia, indicating that ammonia did not induce PTP formation in brain in vivo. The nuclear level of p53 did not change, whereas its cytoplasmic level increased approximately two-fold. In agreement with the theory that translocation of the p53 from cytosol to nuclei is an essential step for induction of apoptosis we did not find apoptotic nuclei in brain of rats injected with ammonia. This supports the idea that ammonia neurotoxicity does not involve apoptosis and points to impaired p53 transfer from cytoplasm to nuclei as a possible preventer of apoptosis. We did not find any release of cytochrome c from mitochondria to cytosol after ammonia injection. Cytochrome c content was significantly reduced (30%) in brain mitochondria from rats injected with ammonia. This decrease may contribute to the reduced state 3 respiration, decreased respiratory control index, and disturbances in the mitochondrial electron transport chain in brain mitochondria from rats injected with ammonia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.21385 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!