The purpose of this study was to promote fibroblast proliferation and collagen remodeling in flexor tendon repair through sustained delivery of platelet derived growth factor (PDGF-BB). The release kinetics of PDGF-BB from a novel fibrin matrix delivery system was initially evaluated in vitro. After the in vivo degradation rate of the fibrin matrix was determined using fluorescently tagged fibrin, PDGF-BB was delivered to the site of flexor tendon repair in vivo in a canine model. The effect of PDGF-BB on intrasynovial tendon healing was studied using histology-based assays (cell density, proliferation, and type I collagen expression) and by measuring total DNA levels and reducible collagen crosslink levels. The fibrin matrix delivery system provided sustained release of PDGF-BB in vitro at a rate modulated by the ratio of heparin to growth factor. In vivo, the fibrin matrix remained at the repair site for more than 10 days. Delivery of PDGF-BB led to a qualitative increase in cell density, cell proliferation, and type I collagen mRNA expression. PDGF-BB also led to statistically significant increases in total DNA (20% increase at 7 days, 18% increase at 14 days) and reducible collagen crosslinks (30% increase at 7 days). Sustained delivery of growth factors may be achieved using a novel fibrin-based delivery system. PDGF-BB delivery increased cell proliferation and matrix remodeling and thus may accelerate flexor tendon healing.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.20444DOI Listing

Publication Analysis

Top Keywords

delivery system
16
fibrin matrix
16
tendon repair
12
cell proliferation
12
flexor tendon
12
increase days
12
pdgf-bb
9
delivery
8
proliferation collagen
8
collagen remodeling
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!