Background: Pathogens transmitted by ticks cause human disease on a greater scale than any other vector-borne infections in Europe, and have increased dramatically over the past 2-3 decades. Reliable records of tick-borne encephalitis (TBE) since 1970 show an especially sharp upsurge in cases in Eastern Europe coincident with the end of Soviet rule, including the three Baltic countries, Estonia, Latvia and Lithuania, where national incidence increased from 1992 to 1993 by 64, 175 and 1,065%, respectively. At the county level within each country, however, the timing and degree of increase showed marked heterogeneity. Climate has also changed over this period, prompting an almost universal assumption of causality. For the first time, we analyse climate and TBE epidemiology at sufficiently fine spatial and temporal resolution to question this assumption.
Methodology/principal Finding: Detailed analysis of instrumental records of climate has revealed a significant step increase in spring-time daily maximum temperatures in 1989. The seasonal timing and precise level of this warming were indeed such as could promote the transmission of TBE virus between larval and nymphal ticks co-feeding on rodents. These changes in climate, however, are virtually uniform across the Baltic region and cannot therefore explain the marked spatio-temporal heterogeneity in TBE epidemiology.
Conclusions/significance: Instead, it is proposed that climate is just one of many different types of factors, many arising from the socio-economic transition associated with the end of Soviet rule, that have acted synergistically to increase both the abundance of infected ticks and the exposure of humans to these ticks. Understanding the precise differential contribution of each factor as a cause of the observed epidemiological heterogeneity will help direct control strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1876807 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0000500 | PLOS |
J Clin Med
December 2024
Department of Infectious Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia.
: In Slovenia, patients with suspected tick-borne encephalitis (TBE) were historically referred to infectious diseases (ID), but during the COVID-19 pandemic, there were increased referrals to neurology. This study compared the clinical management of TBE patients between ID specialists and neurologists and assessed patients' outcomes. : We retrospectively reviewed the clinical, laboratory, and imaging data of 318 adult patients with TBE managed by ID (n = 256; 80.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.
is a vector of several human pathogens in the United States, including the cause of Lyme disease, and Powassan virus (POWV), an emerging cause of severe encephalitis. Skin biopsies from tick bite sites are frequently collected and tested for the presence of spirochetes ( spp.), which remain elusive.
View Article and Find Full Text PDFJ Travel Med
January 2025
Balkan Association for Vector-Borne Diseases, 21000, Novi Sad, Serbia.
Nucleic Acids Res
January 2025
Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic.
In RNA interference (RNAi), long double-stranded RNA is cleaved by the Dicer endonuclease into small interfering RNAs (siRNAs), which guide degradation of complementary RNAs. While RNAi mediates antiviral innate immunity in plants and many invertebrates, vertebrates have adopted a sequence-independent response and their Dicer produces siRNAs inefficiently because it is adapted to process small hairpin microRNA precursors in the gene-regulating microRNA pathway. Mammalian endogenous RNAi is thus a rudimentary pathway of unclear significance.
View Article and Find Full Text PDFJ Vet Res
December 2024
Department of Virology, National Veterinary Research Institute, 24-100 Puławy, Poland.
Introduction: In winter 2021/2022, a wolf population in the primeval Białowieża Forest in Poland was struck by an outbreak of severe mange caused by mixed infestations of and mites. We present an epidemiological analysis of this mange which caused significant morbidity and mortality.
Material And Methods: Ten sites known for wolf activity were monitored by camera trapping.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!