One of the obstacles to efficient vector-mediated gene therapy for Duchenne's muscular dystrophy (DMD) is its limited transduction efficiency. The VP22 tegument protein of herpes simplex virus type 1 (HSV-1) is able to cross biological membranes and translocate the VP22 fusion protein from transfected primary cells to surrounding cells and improve the outcome of gene transfer. To improve the efficiency of vector-mediated gene therapy and to investigate the utility of the intercellular trafficking properties of VP22-linked protein for the treatment for DMD, the recombinant adenoviruses Ad-VP22, Ad-MICDYS, and Ad-VP22-MICDYS were constructed and the VP22-mediated shuttle effect was evaluated both in vitro and in vivo. About 92 +/- 3.6% of cells were microdystrophin positive 48 hr postinfection with Ad-VP22-MICDYS. The number of centralized nuclei in Ad-VP22-MICDYS-transduced tibialis anterior (TA) muscle was significantly reduced, from 78 +/- 5.2 to 20 +/- 2.5%, by 2 weeks postinjection. By 2 months postinjection, the average number of microdystrophin-positive fibers in TA muscle injected with Ad-VP22-MICDYS was 2.2 times more than that of TA muscle injected with Ad-MICDYS. Ad-VP22-MICDYS led to significant recovery of force-producing capabilities in TA muscle. These results demonstrate that VP22 greatly augmented adenovirus-mediated microdystrophin delivery to C2C12 cells and to the skeletal muscles of dystrophin-deficient (mdx) mice. These results highlight the efficiency of VP22-mediated intercellular protein delivery for the potential therapy of DMD and suggest that VP22 may be a promising tool with which to enhance the efficacy of adenoviral gene transfer for somatic gene therapy of DMD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/hum.2006.155 | DOI Listing |
BMC Genomics
January 2025
College of Basic Medicine, Guilin Medical University, Guilin, 541199, P.R. China.
Background: Gyrodactylus von Nordmann, 1832, a genus of viviparous parasites within the family Gyrodactylidae, contains one of the largest nominal species in the world. Gyrodactylus pseudorasborae Ondračková, Seifertová & Tkachenko, 2023 widely distributed in Europe and China, although its mitochondrial genome remains unclear. This study aims to sequence the mitogenome of G.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
Conjugation plays a major role in dissemination of antimicrobial resistance genes. Following transfer of IncF-like plasmids, recipients become refractory to a second wave of conjugation with the same plasmid via entry (TraS) and surface (TraT) exclusion mechanisms. Here, we show that TraT from the pKpQIL and F plasmids (TraT and TraT) exhibits plasmid surface exclusion specificity.
View Article and Find Full Text PDFCell Death Dis
January 2025
NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China.
Neuroinflammation is a key factor in the pathogenesis of Parkinson's disease (PD). Activated microglia in the central nervous system (CNS) and infiltration of peripheral immune cells contribute to dopaminergic neuron loss. However, the role of peripheral immune responses, particularly triggering receptor expressed on myeloid cells-1 (TREM-1), in PD remains unclear.
View Article and Find Full Text PDFJ Appl Microbiol
January 2025
Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.
Aims: This study evaluated the phenotypic and genotypic traits of mcr-1.1-harboring Escherichia coli isolates from chickens, pigs, humans, and farm environments. The resistome and the mobile genetic elements associated with the spread of mcr-1.
View Article and Find Full Text PDFOpen Biol
January 2025
School of Life Sciences, University of Dundee, Dundee, UK.
The established consensus sequence for human 5' splice sites masks the presence of two major splice site classes defined by preferential base-pairing potentials with either U5 snRNA loop 1 or the U6 snRNA ACAGA box. The two 5' splice site classes are separable in genome sequences, sensitized by specific genotypes and associated with splicing complexity. The two classes reflect the commitment to 5' splice site usage occurring primarily during 5' splice site transfer to U6 snRNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!