Unlabelled: The skeletal phenotype of the cav-1(-/-) mouse, which lacks caveolae, was examined. muCT and histology showed increased trabecular and cortical bone caused by the gene deletion. Structural changes were accompanied by increased mechanical properties. Cell studies showed that cav-1 deficiency leads to increased osteoblast differentiation. These results suggest that cav-1 helps to maintain osteoblast progenitors in a less differentiated state.
Introduction: The absence of caveolin-1 in cellular membranes causes dysregulated signaling. To understand the role of the caveolar microdomain in bone homeostasis, we examined the skeletal phenotype of 5- and 8-wk-old cav-1(-/-) mice.
Materials And Methods: High-resolution microCT imaging showed a region-specific effect of cav-1 deficiency on the skeleton. At 5 wk, cav-1(-/-) mice had increased epiphyseal bone volume (+58.4%, p = 0.05); at 8 wk, metaphyseal bone volume was increased by 77.4% (p = 0.008). Cortical bone at the femoral mid-diaphysis showed that the periosteal area of cav-1(-/-) mice significantly exceeded that of cav-1(+/+) mice by 23.9% and 16.3% at 5 and 8 wk, respectively, resulting in increased mechanical properties (I(max): +38.2%, p = 0.003 and I(mi): +23.7%, p = 0.03).
Results: Histomorphometry complemented microCT results showing increased bone formation rate (BFR) at trabecular and cortical sites at 5 wk, which supported findings of increased bone at 8 wk in cav-1(-/-) mice. Formal mechanical testing of the femoral diaphysis confirmed increased bone structure: stiffness increased 33% and postyield deflection decreased 33%. Stromal cells from cav-1(-/-) marrow showed a 23% increase in von Kossa-positive nodules; osteoclastogenesis was also modestly increased in cav-1-deficient marrow. Knockdown of cav-1 with siRNA in wildtype stromal cells increased alkaline phosphatase protein and expression of osterix and Runx2, consistent with osteoblast differentiation.
Conclusions: These data suggest that cav-1 helps to maintain a less differentiated state of osteoblast progenitor cells, and the absence of cav-1 causes bone to mature more rapidly. Caveolin-1 may thus be a target for altering skeletal homeostasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1359/jbmr.070601 | DOI Listing |
Appl Physiol Nutr Metab
January 2025
Brock University, Department of Health Sciences, St Catharines, Ontario, Canada.
The worldwide epidemic of obesity has drastically worsened with the increase in more sedentary lifestyles and increased consumption of fatty foods. Increased blood free fatty acids (FFAs), often observed in obesity, leads to impaired insulin action, and promotes the development of insulin resistance and Type 2 diabetes mellitus (T2DM). JNK, IKK-NF-κB, and STAT3 are known to be involved in skeletal muscle insulin resistance.
View Article and Find Full Text PDFActa Orthop
January 2025
Helsinki New Children's Hospital, Helsinki University Hospital, Helsinki, Finland.
Spondylolysis is defined as a defect or elongation in the pars interarticularis of the lumbar spine, either unilateral or bilateral. Growing children with bilateral spondylolysis may develop spondylolisthesis, i.e.
View Article and Find Full Text PDFCurr Cardiol Rep
January 2025
Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave, Campus Box 8086, St. Louis, MO, 63110, USA.
Purpose Of Review: This review aims to explore the role of immune memory and trained immunity, focusing on how innate immune cells like monocytes, macrophages, and natural killer cells undergo long-term epigenetic and metabolic rewiring. Specifically, it examines the mechanisms by which trained immunity, often triggered by infection or vaccination, could impact cardiac processes and contribute to both protective and pathological responses within the cardiovascular system.
Recent Findings: Recent research demonstrates that vaccination and infection not only activate immune responses in circulating monocytes and tissue macrophages but also affect immune progenitor cells within the bone marrow environment, conferring lasting protection against heterologous infections.
J Mater Sci Mater Med
January 2025
Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt.
Bone cement is commonly utilized to secure prosthetic joints in the body because of its robust fixation, stability, biocompatibility, and immediate load-bearing capability. However, issues such as loosening, leakage, and insufficient bioactivity can lead to its failure. Therefore, improving its mechanical, physical, and biological properties is crucial for enhancing its efficiency.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Department of Periodontology, Semmelweis University, Budapest, Hungary.
Objectives: To investigate the performance of a deep learning (DL) model for segmenting cone-beam computed tomography (CBCT) scans taken before and after mandibular horizontal guided bone regeneration (GBR) to evaluate hard tissue changes.
Materials And Methods: The proposed SegResNet-based DL model was trained on 70 CBCT scans. It was tested on 10 pairs of pre- and post-operative CBCT scans of patients who underwent mandibular horizontal GBR.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!