Digestion residues of typical and high-beta-glucan oat flours provide substrates for in vitro fermentation.

J Agric Food Chem

Department of Food Science and Human Nutrition and Department of Agronomy, Iowa State University, Ames, Iowa 50011, USA.

Published: June 2007

AI Article Synopsis

  • The study evaluated the in vitro fermentability of oat flour digestion residues from two commercial oat lines and two high-beta-glucan experimental lines, focusing on their beta-glucan content.
  • The fermentation process lasted 24 hours and was analyzed by measuring changes in pH, production of short-chain fatty acids (SCFAs), and carbohydrate consumption.
  • Results indicated that the high-beta-glucan lines resulted in the greatest pH decline and SCFA production, suggesting they could optimize gut fermentation conditions.

Article Abstract

In vitro fermentabilities of the oat flour digestion residues (ODR) from two commercial oat lines with 4.7 and 5.3% beta-glucan and from two high-beta-glucan experimental lines with 7.6 and 8.1% beta-glucan were evaluated and compared with fermentations of lactulose, purified oat beta-glucan (POBG), and purified oat starch (POS). Substrates were fermented by using an in vitro batch fermentation system under anaerobic conditions for 24 h. The progress of the fermentation was studied by following the change in pH of the fermentation medium, production of short-chain fatty acids (SCFA) and gases, and consumption of carbohydrates. The substrate from the flour with the greatest amount of beta-glucan tended to have the greatest pH decline and the greatest total SCFA production. A significant correlation occurred between gas production and SCFA formation (R 2 = 0.89-0.99). Acetate was produced in the greatest amounts by all of the substrates except POBG, by which butyrate was produced in the greatest amount. More propionate and butyrate, but less acetate, were produced from high-beta-glucan ODR. With the given fermentation conditions, >80% of the total carbohydrate was depleted by the bacteria after 24 h. Glucose was the most rapidly consumed carbohydrate among other available monosaccharides in the fermentation medium. Overall, the high-beta-glucan experimental lines provided the best conditions for optimal in vitro gut fermentations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf070240zDOI Listing

Publication Analysis

Top Keywords

digestion residues
8
high-beta-glucan experimental
8
experimental lines
8
purified oat
8
fermentation medium
8
greatest amount
8
acetate produced
8
produced greatest
8
fermentation
6
oat
5

Similar Publications

The role of canopy family proteins: biological mechanism and disease function.

Mol Biol Rep

January 2025

Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xi Cheng District, Beijing, 100050, China.

Canopy family proteins are highly sequence-conserved proteins with an N-terminal hydrophobic signal sequence, a unique pattern of six cysteine residues characteristic of the saposin-like proteins, and a C-terminal putative endoplasmic reticulum retention signal sequence. At present, the known canopy family proteins are canopy fibroblast growth factor signaling regulator 1 (CNPY1), CNPY2, CNPY3, and CNPY4. Despite similar structures, canopy family proteins regulate complex signal networks to participate in various biological processes.

View Article and Find Full Text PDF

Understanding protein fermentation in the hindgut of pigs is essential due to its implications for health, and ileal digesta is commonly used to study this process . This study aimed to assess the feasibility of utilizing digested residues as a replacement for ileal digesta in evaluating the protein fermentation potential. residues from cottonseed meal, maize germ meal, peanut meal, rapeseed cake, rapeseed meal, soybean meal and sunflower meal were analysed using a modified gas production (GP) technique and curve fitting model to determine their fermentation dynamics and compare with the use of ileal digesta.

View Article and Find Full Text PDF

Utilizing 4-Sulfonylcalix[4]arene as a Selective Mobile Phase Additive for the Capture of Methylated Peptides.

Anal Chem

January 2025

Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road, Shanghai 200237, P. R. China.

Protein methylation has attracted increasing attention due to its significant regulatory roles in various biological processes. However, the diversity of methylation forms, subtle differences between methylated and nonmodified sites, and their ultralow abundances pose substantial challenges for capturing and isolating methylated peptides from biological samples. Herein, we develop a chromatographic method that utilizes 4-sulfonylcalix[4]arene (SC4A) as a mobile phase additive and Click-Maltose as the stationary phase to separate methylated/nonmethylated peptides through the adsorption of the SC4A-(Me3) complex.

View Article and Find Full Text PDF

Rethinking the biochar impact on the anaerobic digestion of food waste in bench-scale digester: Spatial distribution and biogas production.

Bioresour Technol

January 2025

Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore.

The improvement of biogas production in anaerobic digestion (AD) by biochar introduction has been demonstrated. However, the distribution of biochar in the digester and its effect on AD have been seldom explored. In this study, the distribution of biochar and their impact on AD were investigated in a 30 L semi-continuously operated bench-scale anaerobic digester.

View Article and Find Full Text PDF

Interactions between bacteriophages with mammalian immune cells are of great interest and most phages possess at least one molecular pattern (nucleic acid, sugar residue, or protein structure) that is recognizable to the immune system through pathogen associated molecular pattern (PAMP) receptors (i.e., TLRs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!