This paper analyzes the chaotic ray dynamics at multimegater ranges in a deep water environment with internal-wave-induced fluctuations of the sound speed. The behavior of acoustic ray paths is investigated using the Hamiltonian formalism expressed in terms of action-angle variables. It is shown that the range dependence of the action variable of chaotic ray can be approximated by a random Wiener process. On the basis of this result an approximate statistical description of the chaotic ray structure is derived. Distributions of coordinates, momenta (grazing angles), and actions of sound rays are evaluated. This statistical approach is used for studying ray travel times, that is, arrival times of sound pulses coming to the receiver through different ray paths. The spread of travel times for a bundle of rays with close starting parameters and the influence of sound speed fluctuations on the timefront representing ray arrivals in the time-depth plane are examined. Estimates for the widening and bias of the timefront segment caused by the fluctuations are obtained.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.2717429 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Chaotic Matter Science Research Center, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou, 341000, P.R. China.
Ferroelectric (FE)-antiferromagnetic (AFM) multiferroic materials have sparked growing interest due to their huge possibilities in energy-saving, photoelectric devices, nonvolatile storage, and switches. However, realizing FE-AFM properties in a hybrid molecular material is difficult because ferroelectric and magnetic orders are commonly mutually exclusive. Here, we report an FE-AFM multiferroic semiconductor [NH(18-crown-6)][Mn(SCN)] (NCMS) by supramolecular assembly approach via molecular rotor synthon [NH(18-crown-6)] and inorganic magnetic module [Mn(SCN)].
View Article and Find Full Text PDFChaos
December 2024
Division of Dynamics, Technical University of Lodz, Stefanovskiego 1/15, 90-924 Lodz, Poland.
Complexity is an important metric for appropriate characterization of different classes of irregular signals, observed in the laboratory or in nature. The literature is already rich in the description of such measures using a variety of entropy and disequilibrium measures, separately or in combination. Chaotic signal was given prime importance in such studies while no such measure was proposed so far, how complex were the extreme events when compared to non-extreme chaos.
View Article and Find Full Text PDFJ Plant Res
September 2024
Royal Botanic Garden Edinburgh, Edinburgh, UK.
Floral diversity of Croton, the second largest genus in Euphorbiaceae, is currently under-explored. Several clades demonstrate an unusual floral morphology, e.g.
View Article and Find Full Text PDFEnviron Sci Technol
July 2024
Department of Water Resources and Drinking Water, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland.
Unsaturated porous media, characterized by the combined presence of several immiscible fluid phases in the pore space, are highly relevant systems in nature, because they control the fate of contaminants and the availability of nutrients in the subsoil. However, a full understanding of the mechanisms controlling solute mixing in such systems is still missing. In particular, the role of saturation in the development of chaotic solute mixing has remained unexplored.
View Article and Find Full Text PDFPhys Rev E
April 2024
Department of Physics, Jadavpur University, Kolkata 700075, India.
This article confronts the formidable task of exploring chaos within hidden attractors in nonlinear three-dimensional autonomous systems, highlighting the lack of established analytical and numerical methodologies for such investigations. As the basin of attraction does not touch the unstable manifold, there are no straightforward numerical processes to detect those attractors and one has to implement special numerical and analytical strategies. In this article we present an alternative approach that allows us to predict the basin of attraction associated with hidden attractors, overcoming the existing limitations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!