Voltage-gated sodium channels expressed on the plasma membrane activate rapidly in response to changes in membrane potential in cells with excitable membranes such as muscle and neurons. Macrophages also require rapid signaling mechanisms as the first line of defense against invasion by microorganisms. In this study, our goal was to examine the role of intracellular voltage-gated sodium channels in macrophage function. We demonstrate that the cardiac voltage-gated sodium channel, NaV1.5, is expressed on the late endosome, but not the plasma membrane, in a human monocytic cell line, THP-1, and primary human monocyte-derived macrophages. Although the neuronal channel, NaV1.6, is also expressed intracellularly, it has a distinct subcellular localization. In primed cells, NaV1.5 regulates phagocytosis and endosomal pH during LPS-mediated endosomal acidification. Activation of the endosomal channel causes sodium efflux and decreased intraendosomal pH. These results demonstrate a functionally relevant intracellular voltage-gated sodium channel and reveal a novel mechanism to regulate macrophage endosomal acidification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.178.12.7822 | DOI Listing |
Eur J Med Res
January 2025
Department of Anesthesiology, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Road, Yubei District, Chongqing, 401147, China.
Background: Postoperative pain intensity is influenced by various factors, including genetic variations. The SCN10A gene encodes the Nav1.8 sodium channel protein, which is crucial for pain signal transmission in peripheral sensory neurons.
View Article and Find Full Text PDFJ Gen Physiol
March 2025
Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, USA.
Voltage-gated sodium (Nav) channels are pivotal for cellular signaling, and mutations in Nav channels can lead to excitability disorders in cardiac, muscular, and neural tissues. A major cluster of pathological mutations localizes in the voltage-sensing domains (VSDs), resulting in either gain-of-function, loss-of-function effects, or both. However, the mechanism behind this functional diversity of mutations at equivalent positions remains elusive.
View Article and Find Full Text PDFJ Med Entomol
January 2025
Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM 88003, USA.
In recent decades, the common and the tropical bed bugs have experienced a resurgence in many parts of the world. The evolution of insecticide resistance in bed bug populations is considered a significant factor contributing to this resurgence. We analyzed samples of Cimex lectularius L.
View Article and Find Full Text PDFEpilepsia
January 2025
Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark.
Objectives: Developmental and epileptic encephalopathies (DEEs) caused by pathogenic variants in SCN8A are associated with difficult-to-treat and early-onset seizures, developmental delay/intellectual disability, impaired quality of life, and increased risk of early mortality. High doses of sodium channel blockers are typically used to treat SCN8A-DEE caused by gain-of-function (GoF) variants. However, seizures are often drug resistant, and only a few patients achieve seizure freedom.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
Purpose: The major cardiac voltage-gated sodium channel Na1.5 (I) is essential for cardiac action potential initiation and subsequent propagation. Compound Chinese medicine Wenxin Keli (WXKL) has been shown to suppress arrhythmias and heart failure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!