We identified a mutation in the 60S ribosomal protein L33A (rpl33a-G76R) that elicits derepression of GCN4 translation (Gcd- phenotype) by allowing scanning preinitiation complexes to bypass inhibitory upstream open reading frame 4 (uORF4) independently of prior uORF1 translation and reinitiation. At 37 degrees C, rpl33a-G76R confers defects in 60S biogenesis comparable to those produced by the deletion of RPL33A (DeltaA). At 28 degrees C, however, the 60S biogenesis defect is less severe in rpl33a-G76R than in DeltaA cells, yet rpl33a-G76R confers greater derepression of GCN4 and a larger reduction in general translation. Hence, it appears that rpl33a-G76R has a stronger effect on ribosomal-subunit joining than does a comparable reduction of wild-type 60S levels conferred by DeltaA. We suggest that rpl33a-G76R alters the 60S subunit in a way that impedes ribosomal-subunit joining and thereby allows 48S rRNA complexes to abort initiation at uORF4, resume scanning, and initiate downstream at GCN4. Because overexpressing tRNAiMet suppresses the Gcd- phenotype of rpl33a-G76R cells, dissociation of tRNAiMet from the 40S subunit may be responsible for abortive initiation at uORF4 in this mutant. We further demonstrate that rpl33a-G76R impairs the efficient processing of 35S and 27S pre-rRNAs and reduces the accumulation of all four mature rRNAs, indicating an important role for L33 in the biogenesis of both ribosomal subunits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1952170 | PMC |
http://dx.doi.org/10.1128/MCB.00019-07 | DOI Listing |
Front Microbiol
December 2024
Scientific Research Institute of Systems Biology and Medicine, Moscow, Russia.
Introduction: WhiA is a conserved protein found in numerous bacteria. It consists of an HTH DNA-binding domain linked with a homing endonuclease (HEN) domain. WhiA is one of the most conserved transcription factors in reduced bacteria of the class Mollicutes.
View Article and Find Full Text PDFDiverse subtypes of cortical projection neurons (PN) form long-range axonal projections that are responsible for distinct sensory, motor, cognitive, and behavioral functions. Translational control has been identified at multiple stages of PN development, but how translational regulation contributes to formation of distinct, subtype-specific long-range circuits is poorly understood. Ribosomal complexes (RCs) exhibit variations of their component proteins, with an increasing set of examples that confer specialized translational control.
View Article and Find Full Text PDFActa Parasitol
January 2025
Department of Parasitology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, 58140, Sivas, Türkiye.
Purpose: Cryptosporidium spp. and Giardia duodenalis are zoonotic protozoan parasites that are widely seen in domestic and wild animals worldwide. While these pathogens, which affect the digestive system of the hosts, cause high economic losses in animal breeding, they are also considered an important public health problem.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pathology and Laboratory Medicine, Collage of Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, United States.
Deoxyhypusine synthase (DHPS) is an enzyme encoded by the DHPS gene, with high expression in various cancers, including ovarian cancer (OC). DHPS regulates the translation initiation factor EIF5A, and EIF5A2 knockout inhibits OC tumor growth and metastasis by blocking the epithelial-to-mesenchymal transition (EMT) and the TGFβ pathway. In this study, we show that DHPS is amplified in OC patients, and its elevated expression correlates with poor survival.
View Article and Find Full Text PDFNat Protoc
January 2025
Department of Chemistry, University of California, Berkeley, CA, USA.
Aminoacyl-tRNA synthetases (aaRSs) provide an essential functional link between an mRNA sequence and the protein it encodes. aaRS enzymes catalyze a two-step chemical reaction that acylates specific tRNAs with a cognate α-amino acid. In addition to their role in translation, acylated tRNAs contribute to non-ribosomal natural product biosynthesis and are implicated in multiple human diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!