We found that p53-deficient (p53(-/-)) lung carcinoma (H1299) cells express robust levels of cell surface uPAR and uPAR mRNA. Expression of p53 protein in p53(-/-) cells suppressed basal and urokinase (uPA)-induced cell surface uPAR protein and increased uPAR mRNA degradation. Inhibition of p53 by RNA silencing in Beas2B human airway epithelial cells conversely increased basal as well as uPA-mediated uPAR expression and stabilized uPAR mRNA. Purified p53 protein specifically binds to the uPAR mRNA 3' untranslated region (3'UTR), and endogenous uPAR mRNA associates with p53. The p53 binding region involves a 37-nucleotide uPAR 3'UTR sequence, and insertion of the p53 binding sequence into beta-globin mRNA destabilized beta-globin mRNA. Inhibition of p53 expression in these cells reverses decay of chimeric beta-globin-uPAR mRNA. These observations demonstrate a novel regulatory role for p53 as a uPAR mRNA binding protein that down-regulates uPAR expression, destabilizes uPAR mRNA, and thereby contributes to the viability of human airway epithelial or lung carcinoma cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1952137PMC
http://dx.doi.org/10.1128/MCB.00080-07DOI Listing

Publication Analysis

Top Keywords

upar mrna
32
upar
13
mrna
11
p53
9
expression p53
8
lung carcinoma
8
cell surface
8
surface upar
8
p53 protein
8
inhibition p53
8

Similar Publications

Three-finger proteins (TFPs), or Ly6/uPAR proteins, are characterized by the beta-structural LU domain containing three protruding "fingers" and stabilized by four conserved disulfide bonds. TFPs were initially characterized as snake alpha-neurotoxins, but later many studies showed their regulatory roles in different organisms. Despite a known expression of TFPs in vertebrates, they are poorly studied in other taxa.

View Article and Find Full Text PDF

Alzheimer disease (AD) is a widespread neurodegenerative disease characterized by the accumulation of oligomeric toxic forms of β-amyloid (Aβ1-42) and dysfunction of the cholinergic system in the different brain regions. However, the exact mechanisms of AD pathogenesis and the role of the nicotinic acetylcholine receptors (nAChRs) in the disease progression remain unclear. Here, we revealed a decreased expression of a number of the Ly6/uPAR proteins targeting nAChRs in the cerebellum of 2xTg-AD mice (model of early AD) in comparison with non-transgenic mice both at mRNA and protein levels.

View Article and Find Full Text PDF

Establishment of SV40 Large T-Antigen-Immortalized Yak Rumen Fibroblast Cell Line and the Fibroblast Responses to Lipopolysaccharide.

Toxins (Basel)

August 2023

Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.

The yak lives in harsh alpine environments and the rumen plays a crucial role in the digestive system. Rumen-associated cells have unique adaptations and functions. The yak rumen fibroblast cell line (SV40T-YFB) was immortalized by introducing simian virus 40 large T antigen (SV40T) by lentivirus-mediated transfection.

View Article and Find Full Text PDF

Cellular senescence is a biological aging process that is exacerbated by obesity and leads to inflammation and age- and obesogenic-driven chronic diseases including type 2 diabetes. Caloric restriction (CR) may improve metabolic function in part by reducing cellular senescence and the pro-inflammatory senescence-associated phenotype (SASP). We conducted an ancillary investigation of an 18-week randomized controlled trial (RCT) of CR (n = 31) or Control (n = 27) in 58 middle-aged/older adults (57.

View Article and Find Full Text PDF

Enhancing the invasive traits of breast cancers by CYP1B1 via regulation of p53 to promote uPAR expression.

Biochim Biophys Acta Mol Basis Dis

January 2024

Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea. Electronic address:

Human cytochrome P450 1B1 (CYP1B1) catalyzes estrogen metabolism to produce metabolites that promote the progression of breast cancer. Since the invasive properties of cancer cells cause cancer relapse, which dramatically reduces patient survival, we investigated the new pro-invasive mechanism involving CYP1B1 in breast cancer. Exploring clinical data from invasive breast cancer patients revealed that CYP1B1 exhibits a potential correlation with urokinase-type plasminogen activator receptor (uPAR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!