Effects of targeting magnetic drug nanoparticles on human cholangiocarcinoma xenografts in nude mice.

Hepatobiliary Pancreat Dis Int

Department of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.

Published: June 2007

Background: Targeting is a new therapeutic tool for malignant tumor as a result of combining nanotechnology with chemotherapeutics. The aim of our study was to investigate the effects of magnetic nanoparticles enveloping a chemotherapeutic drug on human cholangiocarcinoma xenografts in nude mice.

Methods: The human cholangiocarcinoma xenograft model was established in nude mice with the QBC939 cell line. The nude mice were randomly assigned to 7 groups. 0.9% saline or magnetic nanoparticles, including high (group 2), medium (group 4) and low (group 5) dosages, were given to nude mice through the tail vein 20 days after the QBC939 cell line was implanted. Calculations were made 35 days after treatment in order to compare the volumes, inhibition ratios and growth curves of the tumors in each group. Mice in each group were sacrificed randomly to collect tumor tissues and other organs for electron microscopy and pathological examination.

Results: The high and medium dosage groups were significantly different from the control group (P<0.05). The tumor inhibition ratios for the high, medium and low dosage groups were 39.6%, 14.6% and 7.9%, respectively. The tumor growth curve of groups 5, 4, and 2 changed slowly in turn. The high and medium groups showed cell apoptosis under an electron microscope.

Conclusion: Magnetic nanoparticles can inhibit the growth of human cholangiocarcinoma xenografts in nude mice.

Download full-text PDF

Source

Publication Analysis

Top Keywords

nude mice
16
human cholangiocarcinoma
12
cholangiocarcinoma xenografts
8
xenografts nude
8
magnetic nanoparticles
8
qbc939 cell
8
group
6
nude
5
mice
5
effects targeting
4

Similar Publications

Esophageal squamous cell carcinoma (ESCC) has high mortality. The role and regulatory mechanism of hsa_circ_0021727 (circ_0021727) in ESCC remain largely unknown. This study focused on the undiscovered impact of circ_0021727 on cell cycle progression, apoptosis, and angiogenesis of ESCC.

View Article and Find Full Text PDF

Renal cell carcinoma (RCC) is one of the most common malignancies in the urinary system, and clear cell renal cell carcinoma (ccRCC) is the most common subtype. MYBL2 has been reported to be overexpressed in various tumors and associated with poor prognosis in patients, but its biological role in ccRCC remains unclear. In this study, we investigated the mRNA and protein expression levels of MYBL2 in ccRCC samples and evaluated the prognostic value of MYBL2 using TCGA dataset.

View Article and Find Full Text PDF

Application of MMP-2-responsive forming injectable hydrogel in preventing the recurrence of oral squamous cell carcinoma.

RSC Adv

January 2025

Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA No. 30 Fucheng Road, Haidian District Beijing 100142 China

Oral squamous cell carcinoma is one of the most common types of cancer. Surgical resection is one of the most important treatments at present. However, patients often suffer from regional recurrence after surgery.

View Article and Find Full Text PDF

Ovarian cancer is the seventh most common lethal tumor among women in the world. FOXM1 is a transcription factor implicated in the initiation and progression of ovarian cancer by regulating key oncogenic genes. The role of regulatory regions in regulating the expression of FOXM1 in ovarian cancer is not completely clarified.

View Article and Find Full Text PDF

TWIST1 Regulates FOXM1/β-Catenin to Promote the Growth, Migration, and Invasion of Ovarian Cancer Cells by Activating MFAP2.

J Biochem Mol Toxicol

February 2025

Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.

TWIST1 is aberrantly expressed in ovarian cancer (OC). MFAP2 is a downstream target of TWIST1, and we previously found MFAP2 facilitated OC development by activating FOXM1/β-catenin. We planned to investigate the mechanisms of TWIST1 in OC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!