The formation of bone-like tissue from human mesenchymal stem cells (hMSC) cultured in osteogenic medium on silk fibroin scaffolds was monitored and quantified over 44 days in culture using non-invasive time-lapsed micro-computed tomography (microCT). Each construct was imaged nine times in situ. From microCT imaging, detailed morphometrical data on bone volume density, surface-to-volume ratio, trabecular thickness, trabecular spacing, and the structure model index and tissue mineral density were obtained. microCT irradiation did not impact the osteogenic performance of hMSCs based on DNA content, alkaline phosphatase activity, and calcium deposition when compared to non-exposed control samples. Bone-like tissue formation initiated at day 10 of the culture with the deposition of small mineralized clusters. Tissue mineral density increased linearly over time. The surface-to-volume ratio of the bone-like tissues converged asymptotically to 26 mm(-1). Although in vitro formation of bone-like tissue started from clusters, the overall bone volume was not predictable from the time, number, and size of initially formed bone-like clusters. Based on microstructural analysis, the morphometry of the tissue-engineered constructs was found to be in the range of human trabecular bone. In future studies, non-invasive, time-lapsed monitoring may enable researchers to culture tissues in vitro, right until the development of a desired morphology is accomplished. Our data demonstrate the feasibility of qualitatively and quantitatively detailing the spatial and temporal mineralization of bone-like tissue formation in tissue engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10439-007-9338-2 | DOI Listing |
J Biomech Eng
January 2025
Department of Mechanical Engineering Marshall University, Huntington, WV 25755, USA; Department of Biomedical Engineering Marshall University, Huntington, WV 25755, USA.
Cell-laden, scaffold-based tissue engineering methods have been successfully utilized for the treatment of bone fractures. In such methods, the rate of scaffold biodegradation, transport of nutrients, and removal of cell metabolic wastes are critical fluid-dynamics factors, affecting tissue regeneration. Therefore, there is a critical need to identify the underlying material transport mechanisms associated with stem cell-driven, scaffold-based bone tissue regeneration.
View Article and Find Full Text PDFBone
January 2025
Department of Research and Development, Schulthess Klinik, Lengghalde 2, 8008 Zürich, Switzerland. Electronic address:
Osteoarthritis (OA) is associated with sclerosis, a thickening of the subchondral bone plate, yet little is known about bone adaptations around full-thickness cartilage defects in severe knee OA, particularly beneath bone-on-bone wear grooves. This high-resolution micro-computed tomography (microCT) study aimed to quantify subchondral bone microstructure relative to cartilage defect location, distance from the joint space, and groove depth. Ten tibial plateaus with full-thickness cartilage defects were microCT-scanned to determine defect location and size.
View Article and Find Full Text PDFRegen Med
January 2025
Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
Aims: Human periodontal ligament stem cells (hPDLSCs) exhibit an enormous potential to regenerate periodontal tissue. However, their translatability to the clinical setting is constrained by technical difficulties in standardizing culture conditions. The aim was to assess complex culture conditions using a proteomic-based protocol to standardize multi-layer hPDLSC cultivation methodology.
View Article and Find Full Text PDFJ Dent Res
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
Cementum, a bone-like tissue, is an essential component of periodontium, and periodontitis can lead to degenerative changes in the cementum, eventually resulting in tooth loss. The therapeutic strategy for advanced periodontitis is to achieve periodontal regeneration, of which cementum regeneration is a key criterion. Cementoblasts are responsible for cementogenesis, and their mineralization counts in cementum regeneration.
View Article and Find Full Text PDFBiofabrication
November 2024
State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China.
Artificial bone graft stands out for avoiding limited source of autograft as well as susceptibility to infection of allograft, which makes it a current research hotspot in the field of bone defect repair. However, traditional design and manufacturing method cannot fabricate bone scaffold that well mimics complicated bone-like shape with interconnected porous structure and multiple properties akin to human natural bone. Additive manufacturing, which can achieve implant's tailored external contour and controllable fabrication of internal microporous structure, is able to form almost any shape of designed bone scaffold via layer-by-layer process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!