Expressed protein ligation (EPL) allows semisynthesis of a target protein with site-specific incorporation of probes or unnatural amino acids at its N or C termini. Here, we describe the protocol that our lab has developed for incorporating fluorotyrosines (F(n)Ys) at residue 356 of the small subunit of Escherichia coli ribonucleotide reductase using EPL. In this procedure, the majority of the protein (residues 1-353 out of 375) is fused to an intein domain and prepared by recombinant expression, yielding the protein in a thioester-activated, truncated form. The remainder of the protein, a 22-mer peptide, is prepared by solid-phase peptide synthesis and contains the F(n)Y at the desired position. Ligation of the 22-mer peptide to the thioester-activated R2 and subsequent purification yield full-length R2 with the F(n)Y at residue 356. The procedure to generate 100 mg quantities of Y356F(n)Y-R2 takes 3-4 months.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nprot.2007.159 | DOI Listing |
Ancestral sequence reconstruction (ASR) is typically performed using homogeneous evolutionary models, which assume that the same substitution propensities affect all sites and lineages. These assumptions are routinely violated: heterogeneous structural and functional constraints favor different amino acid states at different sites, and these constraints often change among lineages as epistatic substitutions accrue at other sites. To evaluate how realistic violations of the homogeneity assumption affect ASR, we developed site-specific substitution models and parameterized them using data from deep mutational scanning experiments on three protein families; we then used these models to perform ASR on the empirical alignments and on alignments simulated under heterogeneous conditions derived from the experiments.
View Article and Find Full Text PDFApplications of genetic code expansion in live cells are widespread and continually emerging, yet they have been limited by their reliance on the supplementation of non-standard amino acids (nsAAs) to cell culturing media. While advances in cell-free biocatalysis are improving nsAA synthesis cost and sustainability, such processes remain reliant on multi-step processes of product isolation followed by supplementation to engineered cells. Here, we report the design of a modular and genetically encoded system that combines the steps of biosynthesis of diverse phenylalanine derivatives, which are the most frequently used family of nsAAs for genetic code expansion, and their site-specific incorporation within target proteins using a single engineered bacterial host.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry - Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden.
Isonitrile-derivatized amino acids are emerging as highly effective infrared (IR) probes for investigating the structures and dynamics of hydrogen (H)-bonds. These probes enable the quantification of chemical exchange processes in solute-solvent complexes via two-dimensional IR spectroscopy and hold significant promise for site-specific dynamic studies within proteins. Despite their potential, theoretical models that elucidate the solvatochromism of isonitriles remain underdeveloped.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Melbourne, School of Chemistry, 30 Flemington Rd., VIC 3095, Parkville, AUSTRALIA.
Palladium(II)-catalyzed C-H functionalization has attracted considerable attention as a pathway to late-stage modification of peptides. Herein, we report the Pd-catalyzed C(sp3)-H arylation of peptides directed by an amidoxime ether, which can be easily incorporated into peptides at any amide bond. Site- and stereoselective arylation of peptides has been achieved, including an unprecedented example of C-H arylation of an internal residue.
View Article and Find Full Text PDFMethodsX
June 2025
Qatar Environment and Energy Research Institue (QEERI), Hamad Bin Khalifa University, Doha, Qatar.
Bioaerosols, pose potential health risks, yet quantitative assessments of non-carcinogenic risks from bioaerosol inhalation are limited. This study introduces a novel approach for assessing non-carcinogenic health risks using bioaerosol exposure data. The method employs the Average Daily Dose and Hazard Quotient (HQ) metrics, adapted from US Environmental Protection Agency guidelines, with the Reference Dose (RfD) based on thresholds from the National Institute of Occupational Safety and Health and the American Conference of Governmental Industrial Hygienists.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!