This protocol details a method of obtaining selectively proliferated hepatocyte progenitor cells using hyaluronic acid (HA)-coated dishes and serum-free medium. A small hepatocyte (SH) is a hepatocyte progenitor cell of adult livers and has many hepatic functions. When the rat SH begins to proliferate, CD44 is specifically expressed. To define the purification of SH, CD44 and cytokeratin 8 are used as marker proteins. The growth of SHs is faster on HA-coated dishes than on other extracellular matrix-coated ones. The use of both DMEM/F12 medium and HA-coated dishes allows the selective proliferation of SHs in culture. The purification of SHs is approximately 85% at day 10.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nprot.2007.118 | DOI Listing |
Nature
January 2025
Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA.
Sci Rep
December 2024
Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore.
Long-term control of viral replication relies on the efficient differentiation of memory T cells into effector T cells during secondary immune responses. Recent findings have identified T cell precursors for both memory and exhausted T cells, suggesting the existence of progenitor-like effector T cells. These cells can persist without antigenic challenge but expand and acquire effector functions upon recall immune responses.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207-7102, United States.
Liver tissues, composed of hepatocytes, cholangiocytes, stellate cells, Kupffer cells, and sinusoidal endothelial cells, are differentiated from endodermal and mesodermal germ layers. By mimicking the developmental process of the liver, various differentiation protocols have been published to generate human liver organoids (HLOs) in vitro using induced pluripotent stem cells (iPSCs). However, HLOs derived solely from the endodermal germ layer often encounter technical hurdles such as insufficient maturity and functionality, limiting their utility for disease modeling and hepatotoxicity assays.
View Article and Find Full Text PDFStem Cell Res Ther
December 2024
Department of Pediatrics, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan, 250012, Shandong, P.R. China.
Background: Hepatic organoids (HOs), validated through comparative sequencing with human liver tissues, are reliable models for liver research. Comprehensive transcriptomic and proteomic sequencing of HOs throughout their induction period will enhance the platform's utility, aiding in the elucidation of liver development's molecular mechanisms.
Methods: We developed hepatic organoids (HOs) from embryonic stem cells (ESCs) through a de novo induction protocol, mimicking the stages of fetal liver development: ESCs to definitive endoderm (DE), then to foregut (FG), hepatoblasts (HB), and finally to HOs stage 1 (HO1), culminating in self-organizing HOs stage 2 (HO2) via dissociation and re-inoculation.
Front Cell Dev Biol
November 2024
Josep Carreras Leukemia Research Institute, Campus Clinic-UB, Casanova 143, Barcelona, Spain.
The CRISPR/Cas9 system has transformed genome editing by enabling precise modifications for diverse applications. Recent advancements, including base editing and prime editing, have expanded its utility beyond conventional gene knock-out and knock-in strategies. Additionally, several catalytically dead Cas9 (dCas9) proteins fused to distinct activation domains have been developed to modulate endogenous gene expression when directed to their regulatory regions by specific single-guide RNAs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!