Retroviral insertional mutagenesis identifies genes that collaborate with NUP98-HOXD13 during leukemic transformation.

Cancer Res

Genetics Branch, Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20889-5105, USA.

Published: June 2007

The t(2;11)(q31;p15) chromosomal translocation results in a fusion between the NUP98 and HOXD13 genes and has been observed in patients with myelodysplastic syndrome (MDS) or acute myelogenous leukemia. We previously showed that expression of the NUP98-HOXD13 (NHD13) fusion gene in transgenic mice results in an invariably fatal MDS; approximately one third of mice die due to complications of severe pancytopenia, and about two thirds progress to a fatal acute leukemia. In the present study, we used retroviral insertional mutagenesis to identify genes that might collaborate with NHD13 as the MDS transformed to an acute leukemia. Newborn NHD13 transgenic mice and littermate controls were infected with the MOL4070LTR retrovirus. The onset of leukemia was accelerated, suggesting a synergistic effect between the NHD13 transgene and the genes neighboring retroviral insertion events. We identified numerous common insertion sites located near protein-coding genes and confirmed dysregulation of a subset of these by expression analyses. Among these genes were Meis1, a known collaborator of HOX and NUP98-HOX fusion genes, and Mn1, a transcriptional coactivator involved in human leukemia through fusion with the TEL gene. Other putative collaborators included Gata2, Erg, and Epor. Of note, we identified a common insertion site that was >100 kb from the nearest coding gene, but within 20 kb of the miR29a/miR29b1 microRNA locus. Both of these miRNA were up-regulated, demonstrating that retroviral insertional mutagenesis can target miRNA loci as well as protein-coding loci. Our data provide new insights into NHD13-mediated leukemogenesis as well as retroviral insertional mutagenesis mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1950322PMC
http://dx.doi.org/10.1158/0008-5472.CAN-07-0075DOI Listing

Publication Analysis

Top Keywords

retroviral insertional
16
insertional mutagenesis
16
genes collaborate
8
transgenic mice
8
acute leukemia
8
common insertion
8
genes
7
retroviral
5
leukemia
5
mutagenesis
4

Similar Publications

The ability of immune cells to expand numerically after infusion distinguishes adoptive immunotherapies from traditional drugs, providing unique therapeutic advantages as well as the potential for unmanageable toxicities. Here, we describe a case of lethal hyperleukocytosis in a patient with neuroblastoma treated on phase 1 clinical trial (NCT03294954) with autologous natural killer T cells (NKTs) expressing a GD2-specific chimeric antigen receptor and cytokine interleukin 15 (GD2-CAR.15).

View Article and Find Full Text PDF

HIV-1 subtype C viruses are responsible for 50% of global HIV burden. However, nearly all currently available reporter viruses widely used in HIV research are based on subtype B. We constructed and characterized a replication-competent HIV-1 subtype C reporter virus expressing mGreenLantern.

View Article and Find Full Text PDF

[Donor DNA Modification with Cas9 Targeting Sites Improves the Efficiency of MTC34 Knock-in into the CXCR4 Locus].

Mol Biol (Mosk)

December 2024

Center of Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia.

To successfully apply the genome editing technology using the CRISPR/Cas9 system in the clinic, it is necessary to achieve a high efficiency of knock-in, which is insertion of a genetic construct into a given locus of the target cell genome. One of the approaches to increase the efficiency of knock-in is to modify donor DNA with the same Cas9 targeting sites (CTS) that are used to induce double-strand breaks (DSBs) in the cell genome (the double-cut donor method). Another approach is based on introducing truncated CTS (tCTS), including a PAM site and 16 proximal nucleotides, into the donor DNA.

View Article and Find Full Text PDF

The kinesin family member 18A () is an essential regulator of microtubule dynamics and chromosome alignment during mitosis. Functional dependency on KIF18A varies by cell type and genetic context but the heritable factors that influence this dependency remain unknown. To address this, we took advantage of the variable penetrance observed in different mouse strain backgrounds to screen for loci that modulate germ cell depletion in the absence of KIF18A.

View Article and Find Full Text PDF

Insertion and Anchoring of the HIV-1 Fusion Peptide into a Complex Membrane Mimicking the Human T-Cell.

J Phys Chem B

December 2024

T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.

A fundamental understanding of how the HIV-1 envelope (Env) protein facilitates fusion is still lacking. The HIV-1 fusion peptide, consisting of 15 to 22 residues, is the N-terminus of the gp41 subunit of the Env protein. Further, this peptide, a promising vaccine candidate, initiates viral entry into target cells by inserting and anchoring into human immune cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!