Purpose: To test whether a direct antiangiogenic peptide (anginex) and a vascular endothelial growth factor antibody (bevacizumab, Avastin) can transiently normalize vasculature within tumors to improve oxygen delivery, alleviate hypoxia, and increase the effect of radiation therapy.
Experimental Design: Tumor oxygenation levels, microvessel density and pericyte coverage were monitored in three different solid tumor models (xenograft human ovarian carcinoma MA148, murine melanoma B16F10, and murine breast carcinoma SCK) in mice. Multiple treatment schedules were tested in these models to assess the influence on the effect of radiation therapy.
Results: In all three tumor models, we found that tumor oxygenation levels, monitored daily in real time, were increased during the first 4 days of treatment with both anginex and bevacizumab. From treatment day 5 onward, tumor oxygenation in treated mice decreased significantly to below that in control mice. This "tumor oxygenation window" occurred in all three tumor models varying in origin and growth rate. Moreover, during the treatment period, tumor microvessel density decreased and pericyte coverage of vessels increased, supporting the idea of vessel normalization. We also found that the transient modulation of tumor physiology caused by either antiangiogenic therapy improved the effect of radiation treatment. Tumor growth delay was enhanced when single dose or fractionated radiotherapy was initiated within the tumor oxygenation window as compared with other treatment schedules.
Conclusions: The results are of immediate translational importance because the clinical benefits of bevacizumab therapy might be increased by more precise treatment scheduling to ensure radiation is given during periods of peak radiosensitivity. The oxygen elevation in tumors by non-growth factor-mediated peptide anginex suggests that vessel normalization might be a general phenomenon of agents directed at disrupting the tumor vasculature by a variety of mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2914684 | PMC |
http://dx.doi.org/10.1158/1078-0432.CCR-06-2441 | DOI Listing |
BMC Pulm Med
January 2025
Department of Geriatrics, Harrison International Peace Hospital, Intersection of Renmin Road, Hongqi Street, Taocheng District, Hengshui City, Hebei Province, 053000, China.
Objectives: To explore the factors related to the progression of chronic obstructive pulmonary disease (COPD).
Methods: 80 COPD patients treated between January 2020 and December 2022. The patients' pulmonary functions at their first hospital admission were categorized into four groups: Grade I, Grade II, Grade III and Grade IV.
J Colloid Interface Sci
December 2024
School of Physics and Electronic Sciences, Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, PR China. Electronic address:
Developing a catalytic nanoenzyme activated by the tumor microenvironment (TME) shows excellent potential for in situ cancer treatment. However, the rational design of a cascade procedure to achieve high therapeutic efficiency remains challenging. In this study, the colorectal TME-responsive multifunctional cascade nanoenzyme CuO@MnO@glucose oxidase (GOx)@hyaluronic acid (HA) was developed to target in situ cancer starvation/chemodynamic therapy (CDT)/photothermal therapy (PTT).
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 China. Electronic address:
The tumor microenvironment (TME) is characterized by several key features, including hypoxia, elevated levels of hydrogen peroxide (HO), high concentrations of glutathione (GSH), and an acidic pH. Recent research has increasingly focused on harnessing or targeting these characteristics for effective cancer therapy. In this study, we developed an innovative composite bio-reactor that integrates genetically engineered bacteria with upconversion nanoparticles (UCNPs) and nano-copper manganese materials for lung cancer treatment.
View Article and Find Full Text PDFMol Pharm
January 2025
School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China.
Photodynamic therapy (PDT) is increasingly regarded as an attractive approach for cancer treatment due to its advantages of low invasiveness, minimal side effects, and high efficiency. Here, two novel Ru(II) complexes , were designed and synthesized by coordinating phenanthroline and biquinoline ligands with Ru(II) center, and their chemo-photodynamic therapy and immunotherapy were explored. Both and exhibited significant phototoxicity against A549 and 4T1 tumor cells type-I/-II PDT.
View Article and Find Full Text PDFJ Cardiothorac Surg
January 2025
Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Background: Carinal resection and reconstruction are complex surgical procedures often necessitated by tumors or other pathologies involving the tracheobronchial junction. Traditional approaches to these surgeries are highly invasive. The advent of uniportal video-assisted thoracoscopic surgery (VATS) along with the integration of extracorporeal membrane oxygenation (ECMO) offer potential advantages in reducing surgical trauma and improving outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!