A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of chemical stabilizers of hypoxia-inducible factors on early lung development. | LitMetric

Effect of chemical stabilizers of hypoxia-inducible factors on early lung development.

Am J Physiol Lung Cell Mol Physiol

CIHR Group in Lung Development, Hospital for Sick Children Research Institute, Department of Pediatrics and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.

Published: September 2007

Low oxygen stimulates pulmonary vascular development and airway branching and involves hypoxia-inducible factor (HIF). HIF is stable and initiates expression of angiogenic factors under hypoxia, whereas normoxia triggers hydroxylation of the HIF-1alpha subunit by prolyl hydroxylases (PHDs) and subsequent degradation. Herein, we investigated whether chemical stabilization of HIF-1alpha under normoxic (20% O(2)) conditions would stimulate vascular growth and branching morphogenesis in early lung explants. Tie2-LacZ (endothelial LacZ marker) mice were used for visualization of the vasculature. Embryonic day 11.5 (E11.5) lung buds were dissected and cultured in 20% O(2) in the absence or presence of cobalt chloride (CoCl(2), a hypoxia mimetic), dimethyloxalylglycine (DMOG; a nonspecific inhibitor of PHDs), or desferrioxamine (DFO; an iron chelator). Vascularization was assessed by X-gal staining, and terminal buds were counted. The fine vascular network surrounding the developing lung buds seen in control explants disappeared in CoCl(2)- and DFO-treated explants. Also, epithelial branching was reduced in the explants treated with CoCl(2) and DFO. In contrast, DMOG inhibited branching but stimulated vascularization. Both DFO and DMOG increased nuclear HIF-1alpha protein levels, whereas CoCl(2) had no effect. Since HIF-1alpha induces VEGF expression, the effect of SU-5416, a potent VEGF receptor (VEGFR) blocker, on early lung development was also investigated. Inhibition of VEGFR2 signaling in explants maintained under hypoxic (2% O(2)) conditions completely abolished vascularization and slightly decreased epithelial branching. Taken together, the data suggest that DMOG stabilization of HIF-1alpha during early development leads to a hypervascular lung and that airway branching proceeds without the vasculature, albeit at a slower rate.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00486.2006DOI Listing

Publication Analysis

Top Keywords

early lung
12
lung development
8
airway branching
8
stabilization hif-1alpha
8
lung buds
8
epithelial branching
8
lung
6
branching
6
hif-1alpha
5
explants
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!