Mechanical limits of viral capsids.

Proc Natl Acad Sci U S A

Fachbereich Physik, Philipps-Universität Marburg, D-35032 Marburg, Germany.

Published: June 2007

We studied the elastic properties and mechanical stability of viral capsids under external force-loading with computer simulations. Our approach allows the implementation of specific geometries corresponding to specific phages, such as phi29 and cowpea chlorotic mottle virus. We demonstrate how, in a combined numerical and experimental approach, the elastic parameters can be determined with high precision. The experimentally observed bimodality of elastic spring constants is shown to be of geometrical origin, namely the presence of pentavalent units in the viral shell. We define a criterion for capsid breakage that explains well the experimentally observed rupture. From our numerics we find a crossover from gamma(2/3) to gamma(1/2) for the dependence of the rupture force on the Föppl-von Kármán number, gamma. For filled capsids, high internal pressures lead to a stronger destabilization for viruses with buckled ground states versus viruses with unbuckled ground states. Finally, we show how our numerically calculated energy maps can be used to extract information about the strength of protein-protein interactions from rupture experiments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1891220PMC
http://dx.doi.org/10.1073/pnas.0611472104DOI Listing

Publication Analysis

Top Keywords

viral capsids
8
experimentally observed
8
ground states
8
mechanical limits
4
limits viral
4
capsids studied
4
studied elastic
4
elastic properties
4
properties mechanical
4
mechanical stability
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!