Reduction of bacterial adhesion on ion-implanted stainless steel surfaces.

Med Eng Phys

Department of Mechanical Engineering, University of Dundee, Dundee, UK.

Published: April 2008

The high incidence of infections caused by the use of biomedical devices has a severe impact on human health. An approach to reduce the complications is to modify the surface properties of biomedical devices. In this paper, stainless steel disks were implanted with N(+), O(+) and SiF(3)(+), respectively, by an ion implantation technique. The surface properties of the ion-implanted surfaces were characterized, including their surface chemical composition, roughness, topography, wettability and surface energy. Bacterial adhesion of Staphylococcus epidermidis and Staphylococcus aureus, which frequently cause medical device-associated infections was evaluated. The experimental results showed that these implanted stainless steels, particularly SiF(3)(+) implanted stainless steel performed much better than untreated stainless steel control on reducing bacterial attachment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.medengphy.2007.04.004DOI Listing

Publication Analysis

Top Keywords

stainless steel
16
bacterial adhesion
8
biomedical devices
8
surface properties
8
implanted stainless
8
stainless
5
reduction bacterial
4
adhesion ion-implanted
4
ion-implanted stainless
4
steel
4

Similar Publications

Quantitative Assessment of Microbial Transmission onto Environmental Surfaces Using Thermoresponsive Gelatin Hydrogels as a Finger Mimetic under In Situ-Mimicking Conditions.

Adv Healthc Mater

January 2025

Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials and Technology, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland.

Surface-mediated transmission of pathogens plays a key role in healthcare-associated infections. However, proper techniques for its quantitative analysis are lacking, making it challenging to develop novel antimicrobial and anti-fouling surfaces to reduce pathogen spread via environmental surfaces. This study demonstrates a gelatin hydrogel-based touch transfer test, the HydroTouch test, to evaluate pathogen transmission on high-touch surfaces under semi-dry conditions.

View Article and Find Full Text PDF

Three types of commercial austenitic stainless steels, 1.4307 (AISI 304 L), 1.4404 (AISI 316 L) 1.

View Article and Find Full Text PDF

A novel appliance for Class II dentoalveolar correction.

J Orthod

January 2025

Private Practice, Jerusalem, Israel.

In recent years, a segmental approach to Class II correction has gained popularity among orthodontists. This concept is best represented by the Carrière Motion 3D™ Class II Appliance (CMA), which is an efficient and effective appliance for the treatment of Class II malocclusions. Although it is original and innovative, it also has some inherent flaws that can potentially interfere with its daily use.

View Article and Find Full Text PDF

A bimetallic organic framework (CuNi-MOF) was synthesized as a corrosion inhibitor using the solvothermal method. The effectiveness of the inhibitor in corrosion prevention of AISI 304 and 316 in 1N hydrochloric acid solution at room temperature was evaluated using weight loss measurements, electrochemical methods, and surface characterization techniques. The formation of CuNi-MOF protective layer on the stainless-steel surface was confirmed through Field Emission Scanning Electron Microscopes (FESEM), Energy Dispersive Spectroscopy (EDS), and X-Ray Diffraction (XRD) analysis.

View Article and Find Full Text PDF

Scaling of steel surfaces, prevalent in various industrial applications, results in significant operational inefficiencies and maintenance costs. Inspired by the natural hydrophobicity of springtail (Collembola) skin, which employs micro- and nanostructures to repel water, we investigate the application of silicone nanofilaments (SNFs) as a coating on steel surfaces to mitigate scaling. Silicone nanofilaments, previously successful on polymers, textiles, and glass, are explored for their hydrophobic properties and stability on steel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!