Cell death in yeast (Saccharomyces cerevisiae) involves several apoptotic processes. Here, we report the first evidence of the following processes, which are also characteristic of apoptosis, in ethanol-induced cell death in yeast: chromatin condensation and fragmentation, DNA cleavage, and a requirement for de novo protein synthesis. Mitochondrial fission protein, Fis1, appears to mediate ethanol-induced apoptosis and ethanol-induced mitochondrial fragmentation. However, mitochondrial fragmentation in response to elevated ethanol levels was not correlated with cell death. Further, in the presence of ethanol, generation of reactive oxygen species was elevated in mutant fis1Delta cells. Our characterization of ethanol-induced cell death in yeast as being Fis1-mediated apoptosis is likely to pave the way to overcoming limitations in large-scale fermentation processes, such as those employed in the production of alcoholic beverages and ethanol-based biofuels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2007.05.048DOI Listing

Publication Analysis

Top Keywords

death yeast
16
cell death
16
mitochondrial fission
8
apoptosis ethanol-induced
8
ethanol-induced cell
8
mitochondrial fragmentation
8
ethanol-induced
5
ethanol-induced death
4
yeast
4
yeast exhibits
4

Similar Publications

Yeast frataxin (Yfh1) is a small natural protein from yeast that has the unusual property of undergoing cold denaturation at temperatures above the freezing point of water when under conditions of low ionic strength. This peculiarity, together with remarkable resilience, allows the determination, for the whole protein as well as for individual residues, of the stability curve, that is the temperature dependence of the free energy difference between the unfolded and folded forms. The ease of measuring stability curves without the need to add denaturants or introduce destabilizing mutations makes this protein an ideal 'tool' for investigating the influence of many environmental factors on protein stability.

View Article and Find Full Text PDF

Structural and Functional Glycosylation of the Abdala COVID-19 Vaccine.

Glycobiology

January 2025

Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, OX1 3QU, United Kingdom.

Abdala is a COVID-19 vaccine produced in Pichia pastoris and is based on the receptor-binding domain (RBD) of the SARS-CoV-2 spike. Abdala is currently approved for use in multiple countries with clinical trials confirming its safety and efficacy in preventing severe illness and death. Although P.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) from can elicit immune responses, positioning them as promising acellular vaccine candidates. We characterized EVs from an avirulent cell wall mutant (Δ) and evaluated their protective potential against invasive candidiasis. EVs from the yeast (YEVs) and hyphal (HEVs) forms of the SC5314 wild-type strain were also tested, yielding high survival rates with SC5314 YEV (91%) and YEV immunization (64%).

View Article and Find Full Text PDF

A Potent Antibacterial Peptide (P6) from the De Novo Transcriptome of the Microalga .

Int J Mol Sci

December 2024

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China.

Marine microalgae are a rich source of natural products, and their amino acid-based antimicrobial agents are usually obtained by enzymatic hydrolysis, which is inefficient and limits the research on antimicrobial peptides (AMPs) from microalgae. In this study, is used as a model to predict antimicrobial peptides through high-throughput methods, and 471 putative peptides are identified based on the de novo transcriptome technique. Among them, three short peptides, P1, P6, and P7 were found to have antimicrobial activity against , , , and yeast , and they showed no hemolytic activity even at higher concentrations up to 10 mg/mL.

View Article and Find Full Text PDF

The naphthoquinone moiety is commonly found in numerous natural cytotoxic compounds with diverse and pleiotropic modes of action (MOAs). The moiety can exist as a standalone pharmacophore or combined with other pharmacophores to enrich their MOAs. Here, we report that the synthetic fusion of naphthoquinones and oxazepines provides potent cytotoxic compounds with diverse MOAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!