Background: In recent years, fully implanted rotary blood pumps have been used for long-term cardiac assist in patients with end-stage heart failure. With these pumps, the pulsatility of arterial blood flow and arterial pressure pulse is considerably reduced. Effects on end-organ perfusion, particularly microcirculation, have been assessed.
Methods: The ocular choroid offers a unique opportunity to study the pulsatile component of blood flow by measurement of fundus pulsation amplitude (FPA) as well as the microcirculation by laser Doppler flowmetry. Both techniques were applied in three male patients with rotary pumps (MicroMed DeBakey VAD), in whom pump velocity was adjusted to four levels of flow between individual minimal need and maximal support. In addition, blood flow velocities in the ophthalmic artery (peak, end-diastolic and mean flow velocity--PSV, EDV and MFV, respectively) were measured using color Doppler imaging.
Results: Systolic blood pressure increased by 6 to 22 mm Hg with increasing support. At maximal support FPA was reduced by -60% to -52% as compared with minimal pump support. Blood flow in the choroidal microvasculature, however, did not show relevant changes. A reduction in PSV (-31%, range -47% to -21%) and a pronounced rise in EDV (+93%, range +28% to +147%) was observed, whereas MFV was independent of pump flow.
Conclusions: Our data indicate that mean choroidal blood flow is maintained when pump support is varied within therapeutic values, whereas the ratio of pulsatile to non-pulsatile choroidal flow changes. This study shows that, in patients with ventricular assist devices, a normal perfusion rate in the ocular microcirculation is maintained over a wide range of support conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.healun.2007.03.004 | DOI Listing |
J Cereb Blood Flow Metab
January 2025
KG Jebsen Centre for Brain Fluid Research, University of Oslo, Oslo, Norway.
A potential two-way passage of cells and substances between the brain and skull bone marrow may open for new insights into neurological disease. The arachnoid membrane was traditionally considered to restrict cells and larger molecules in CSF from entering the dura and bone marrow directly. However, new data on exchange between brain and skull bone marrow have recently emerged.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Mechanical and Robotics Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
Electrochemical impedance spectroscopy has great potential for laboratory blood tests. The overall aim of this study is to develop a microfluidic sensor for determining the physical properties and hematological parameters of blood based on its dielectric spectra. Impedance was measured in flowing blood to prevent aggregation and sedimentation at frequencies between 40 Hz and 110 MHz.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Heinz-Nixdorf-Chair of Biomedical Electronics, TranslaTUM, School of Computation, Information and Technology, TUM, Germany; Munich Institute of Biomedical Engineering, TUM, Germany. Electronic address:
Blood cell aggregates are clinically useful biomarkers in a number of medical disorders. This protocol provides accurate and quantitative analysis of cell aggregates using a small volume of whole blood and imaging flow cytometry. We describe steps for sample collection, staining, and measurement.
View Article and Find Full Text PDFMAGMA
January 2025
Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS, Max-von-Laue-Straße 2, 28359, Bremen, Germany.
Objectives: Caffeine, a known neurostimulant and adenosine antagonist, affects brain physiology by decreasing cerebral blood flow. It interacts with adenosine receptors to induce vasoconstriction, potentially disrupting brain homeostasis. However, the impact of caffeine on blood-brain barrier (BBB) permeability to water remains underexplored.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2025
Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Hyperpolarized-C magnetic resonance imaging (HP-C MRI) was used to image changes in C-lactate signal during a visual stimulus condition in comparison to an eyes-closed control condition. Whole-brain C-pyruvate, C-lactate and C-bicarbonate production was imaged in healthy volunteers (N = 6, ages 24-33) for the two conditions using two separate hyperpolarized C-pyruvate injections. BOLD-fMRI scans were used to delineate regions of functional activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!