Matrix assisted laser desorption ionization-time of flight mass spectrometry analysis of hyaluronan oligosaccharides.

Anal Chim Acta

Graduate School of Pharmaceutical Sciences, Chiba University, 1-33, Yayoi, Inage-ku, Chiba-shi, Chiba 263-8522, Japan.

Published: June 2007

AI Article Synopsis

  • A new method is introduced for identifying oligosaccharides derived from hyaluronan (HA) using MALDI-TOF mass spectrometry after enzymatic digestion with bacterial hyaluronidase.
  • The study focuses on analyzing HA oligosaccharides ranging from tetrasaccharides to 34-mers, with various modifications to the carboxyl groups of glucuronate residues.
  • Notably, the methylation of glucuronate using trimethylsilyl diazomethane improves the sensitivity of mass spectra, allowing for a broader range of mass analysis.

Article Abstract

A new method is presented for the identification of oligosaccharides obtained by enzymatic digestion of hyaluronan (HA) with bacterial hyaluronidase (E.C. 4.2.2.1, from Streptomyces hyalurolyticus) using matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOFMS). Mixtures containing HA oligosaccharides of tetrasaccharide (4-mer)-34-mer were analyzed using this method. The carboxyl groups of the glucuronate residues in the prepared HA oligomers, were modified as the acidic form (-COOH), sodium salts (-COONa), organic ammonium salts, or methylesters before MALDI-TOFMS measurement. Among these samples, the methylester form of glucuronate residues in HA oligosaccharides, prepared by methylation using trimethylsilyl diazomethane, afforded high sensitivity for spectra. This simple modification method for carboxyl group methylation of acidic polysaccharides [Hirano et al., Carbohydr. Res., 340, (2005) 2297-2304] provides samples suitable for MALDI-TOF mass spectrometric analysis throughout a significantly enhanced range of masses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4129653PMC
http://dx.doi.org/10.1016/j.aca.2007.05.005DOI Listing

Publication Analysis

Top Keywords

matrix assisted
8
assisted laser
8
laser desorption
8
desorption ionization-time
8
ionization-time flight
8
flight mass
8
mass spectrometry
8
method carboxyl
8
glucuronate residues
8
spectrometry analysis
4

Similar Publications

Advancements in Wound Bed Preparation of Chronic Wounds.

Surg Technol Int

January 2025

Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida.

Chronic wounds are notoriously challenging to heal as they are often halted in their normal healing process. The concept of TIME (Tissue, Inflammation/Infection, Moisture imbalance, Epithelial edge advancement) has been widely utilized in clinical practice to prepare wound beds and promote healing, particularly in longstanding wounds. Traditional methods of wound bed preparation are often inadequate in healing chronic wounds or they may not be tolerated by patients.

View Article and Find Full Text PDF

, a slow-growing nontuberculous mycobacterium, causes Buruli ulcer, a neglected tropical disease. Distinguishing from related species, including , poses challenges with respect to making accurate identifications. In this study, we developed a rapid and simple identification method based on mycobacterial lipid profiles and used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze the lipid profiles of ( = 35) and ( = 19) isolates.

View Article and Find Full Text PDF

Background: Antimicrobial resistance is increasing each year. For example, in 2019 it was directly responsible for an estimated >1 million deaths. Additionally, the development of new drugs is much slower, generating enormous concerns about responses to infection in the future health scenario.

View Article and Find Full Text PDF

Schwann cells (SCs) hold key roles in axonal function and maintenance in the peripheral nervous system (PNS) and are a critical component to the regeneration process following trauma. Following PNS trauma, SCs respond to both physical and chemical signals to modify phenotype and assist in the regeneration of damaged axons and extracellular matrix (ECM). There is currently a lack of knowledge regarding the SC response to dynamic, temporal changes in the ECM brought on by swelling and the development of scar tissue as part of the body's wound-healing process.

View Article and Find Full Text PDF

A rapid, simple, and cost-efficient extraction method was developed for evaluating and screening benzo(a)pyrene (BaP) in tea samples by using high performance liquid chromatography (HPLC) with coupled fluorescence detector (FLD) in order to obtain the best extraction performance. In this study, it was observed that when optimized using microwave assisted extraction (MAE) method was performed twice for 2 min using 10 mL n-hexane: acetonitrile (1:3, v/v). The recoveries for BaP in tea were found to be 97 ± 2; 83 ± 8 and 92 ± 6%, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!