AI Article Synopsis

Article Abstract

The molecular chaperone Hsp104 is an AAA+ ATPase (ATPase associated with a variety of cellular activities) from yeast that catalyzes protein disaggregation. Using mutagenesis, we impaired nucleotide binding or hydrolysis in the two nucleotide-binding domains (NBD) of Hsp104 and analyzed the consequences for chaperone function by monitoring ATP hydrolysis, polypeptide binding, polypeptide processing, and disaggregation. Our results reveal that ATP binding to NBD1 serves as a central regulatory switch for the chaperone; it triggers binding of polypeptides, and stimulates ATP hydrolysis in the C-terminal NBD2 by more than two orders of magnitude, implying that ATP hydrolysis in this domain is important for disaggregation. Moreover, we show that Hsp104 actively unfolds its polypeptide substrates during processing, demonstrating that AAA+ proteins involved in disaggregation share a common threading mechanism with AAA+ proteins mediating protein unfolding/degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2007.04.070DOI Listing

Publication Analysis

Top Keywords

atp hydrolysis
12
molecular chaperone
8
chaperone hsp104
8
aaa+ proteins
8
processing proteins
4
proteins molecular
4
chaperone
4
hsp104
4
hsp104 molecular
4
hsp104 aaa+
4

Similar Publications

Crucial Roles of Electricity in Virology.

Rev Physiol Biochem Pharmacol

January 2025

Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.

Packaging of DNA into viruses in some cases involves remarkably sophisticated electrical control mechanisms. One example is how the T4 bacteriophage uses an electrostatically driven motor to pump DNA into the viral capsid.

View Article and Find Full Text PDF

Overexpressed CD73 attenuates GSDMD-mediated astrocyte pyroptosis induced by cerebral ischemia-reperfusion injury through the A2B/NF-κB pathway.

Exp Neurol

January 2025

Department of Neurosurgery, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214000, China; Wuxi Medical Center of Nanjing Medical University, Wuxi 214000, China. Electronic address:

Ischemic stroke, resulting from the blockage or narrowing of cerebral vessels, causes brain tissue damage due to ischemia and hypoxia. Although reperfusion therapy is essential to restore blood flow, it may also result in reperfusion injury, causing secondary damage through mechanisms like oxidative stress, inflammation, and excitotoxicity. These effects significantly impact astrocytes, neurons, and endothelial cells, aggravating brain injury and disrupting the blood-brain barrier.

View Article and Find Full Text PDF

The MCM motor of the eukaryotic replicative helicase is loaded as a double hexamer onto DNA by the Origin Recognition Complex (ORC), Cdc6, and Cdt1. ATP binding supports formation of the ORC-Cdc6-Cdt1-MCM (OCCM) helicase-recruitment complex where ORC-Cdc6 and one MCM hexamer form two juxtaposed rings around duplex DNA. ATP hydrolysis by MCM completes MCM loading but the mechanism is unknown.

View Article and Find Full Text PDF

Pediatric intensive care patients are particularly susceptible to severe bacterial infections because of ineffective neutrophil responses. The reasons why neutrophils of newborns are less responsive than those of adults are not clear. Because adenosine triphosphate (ATP) and adenosine (ADO) tightly regulate neutrophils, we studied whether the ATP and ADO levels in the blood of newborn mice could impair the function of their neutrophils.

View Article and Find Full Text PDF

Annexins are a family of multifunctional calcium-dependent and phospholipid-binding proteins that are widely distributed in the plant kingdom. They have a highly conserved evolutionary history that dates back to single-celled protists. Plant annexins, as soluble proteins, can flexibly bind to endomembranes and plasma membranes, exhibiting unique calcium-dependent and calcium-independent characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!