Adsorption equilibrium of fructosyltransferase on a weak anion-exchange resin.

J Chromatogr A

Department of Chemical and Biochemical Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia.

Published: August 2007

The adsorption equilibrium of a glycoprotein, fructosyltransferase from Aureobasidium pullulans, on an anion-exchange resin, Sepabeads FP-DA activated with 0.1M NaOH, was investigated. The adsorption isotherms were determined at 20 degrees C in a phosphate-citrate buffer with pH 6.0 using the static method. Sodium chloride was used to adjust the ionic strength in the range from 0.0215 to 0.1215 mol dm(-3) which provided conditions varying from a weak effect of salt concentration on protein binding to its strong suppression. The equilibrium data were very well fitted by means of the steric mass-action model when the ion-exchange capacity of 290 mmol dm(-3) was obtained from independent frontal column experiments. The model fit provided the protein characteristic charge equal to 1.9, equilibrium constant 0.326, and steric factor 1.095 x 10(5).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2007.05.031DOI Listing

Publication Analysis

Top Keywords

adsorption equilibrium
8
anion-exchange resin
8
equilibrium fructosyltransferase
4
fructosyltransferase weak
4
weak anion-exchange
4
resin adsorption
4
equilibrium glycoprotein
4
glycoprotein fructosyltransferase
4
fructosyltransferase aureobasidium
4
aureobasidium pullulans
4

Similar Publications

In this research, activated carbon from banana peel (BPAC) was prepared by calcination (600 °C) method. Nano composites MO@BPAC (MO=NiO, CuO and ZnO) were prepared and then were characterized by XRD, FTIR, FESM, EDX, BETand TGA methods. Formation of MO@BPAC nanocomposites was confirmed by analysis methods.

View Article and Find Full Text PDF

Synthesis of zeolite from rice husk ash and kaolinite clay for the removal of methylene blue from aqueous solution.

Heliyon

January 2025

Department of Chemistry, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana.

Zeolite was successfully synthesized using a mixture of kaolinite clay (which served as the alumina source) and rice husk ash (silica source). The aim of this work was to synthesize highly efficient zelolite to remove methyle blue dye from aqueous solution. The synthesized adsorbent was characterised using Fourier Transform Infrared (FTIR) spectroscopy, powder x-ray diffraction (PXRD) analysis, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and pH at the point of zero charge (pHpzc).

View Article and Find Full Text PDF

Ferrihydrite (Fh), a widely distributed mineral in the environment, plays a crucial role in the geochemical cycling of elements. This study used experimental and computational approaches to investigate the adsorption behavior of seven heavy metal ions on Fh. The pH edge analysis revealed that the adsorption capacity followed the order: Pb > Cu > Zn > Cd > Ni > Co > Mn, with Pb showed the highest adsorption.

View Article and Find Full Text PDF

A complementary experimental and computational study on methanol adsorption isotherms of H-ZSM-5.

Phys Chem Chem Phys

January 2025

UK Catalysis Hub, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, OX11 0FA, UK.

Methanol adsorption isotherms of fresh f-ZSM-5 and steamed s-ZSM-5 (Si/Al ≈ 40) are investigated experimentally at room temperature under equilibrium and by grand canonical Monte Carlo (GCMC) simulations with the aim of understanding the adsorption capacity, geometry and sites as a function of steam treatment (at 573 K for 24 h). Methanol adsorption energies calculated by GCMC are complemented by density functional theory (DFT) employing both periodic and quantum mechanics/molecular mechanics (QM/MM) techniques. Physical and textural properties of f-ZSM-5 and s-ZSM-5 are characterised by diffuse reflectance infrared Fourier transformed spectroscopy (DRIFTS) and N-physisorption, which form a basis to construct models for f-ZSM-5 and s-ZSM-5 to simulate methanol adsorption isotherms by GCMC.

View Article and Find Full Text PDF

This report investigates the preparation, characterization, and application of activated carbon derived from Spathodea campanulata flowers (SCAC) to remove Congo Red (CR) dye from aqueous streams. SCAC was synthesized using orthophosphoric acid activation which yielded a mesoporous material with a specific surface area of (986.41 m/g), significantly exceeding values reported for flower-derived activated carbons in the available literature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!