Transplantation of endothelial progenitor cells (EPCs) restores endothelial function. The present study was designed to determine the effect of autologous EPCs transplantation on the regeneration of endothelium in mice. Mice splenectomy was performed 14 days before carotid artery injury, and mononuclear cells were isolated and cultured in endothelial growth media for 7 days. EPCs were confirmed by immunostaining (CD31, endothelial nitric oxide synthase (eNOS) and double positive for 1,1'dioctadecyl-3,3,3',3-tetramethylindocarbocyanine (DiI)-low-density lipoprotein and ulex europaeus agglutinin (UEA)). Cell counts and fluorescence-activated cell sorting for stem cell marker were performed. 1 x 10(6) 4-,6-Diamidino-2-phenylindole- labeled EPCs or saline were injected through tail vein after wire injury. Two weeks after transplantation, cell tracking and immunohistochemical staining showed homing and incorporation of labeled EPCs in injury artery. Administration of EPCs enhanced reendothelialization (P < 0.05) after 1 week and inhibition of neointima formation at 3 weeks compared with that of saline (P < 0.05, n = 6). These data demonstrate that delivery of autologous EPCs is associated with accelerated reendothelialization and reduced neointimal formation. Thus, delivery of autologous EPCs represents an important vasculoprotective approach to attenuate the response to acute vascular injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1432-2277.2007.00497.x | DOI Listing |
Stem Cell Res Ther
November 2024
Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Dapi Road, Niaosung Dist., Kaohsiung City, 83301, Taiwan.
Int J Mol Sci
September 2024
Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595, USA.
Adult stem cell therapy via intramyocardial injection of autologous CD34+ stem cells has been shown to improve exercise capacity and reduce angina frequency and mortality in patients with refractory angina (RA). However, the cost of such therapy is a limitation to its adoption in clinical practice. Our goal was to determine whether the less costly, less invasive, and widely accessible, FDA-approved alternative treatment for RA patients, known as enhanced external counterpulsation (EECP), mobilizes endogenous CD34+ stem cells and whether such mobilization is associated with the clinical benefits seen with intramyocardial injection.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2024
Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China. Electronic address:
Regen Ther
June 2024
Division of Regenerative Therapy, Juntendo University Graduates School of Medicine, Tokyo, Japan.
Introduction: Autologous mononuclear cells (MNCs) have been used in vascular regenerative therapy since the identification of endothelial progenitor cells (EPCs). However, the efficacy of autologous EPC therapy for diseases such as diabetes and connective tissue disorders is limited due to deficiencies in the number and function of EPCs. To address this, we developed a novel RE-01 cells that enriches pro-angiogenic cells from peripheral blood MNCs (PBMNCs).
View Article and Find Full Text PDFMol Ther
August 2024
Seattle Children's Research Institute, Center for Immunity and Immunotherapy, Seattle, WA, USA; University of Washington, Departments of Pediatrics and Pharmacology, Seattle, WA, USA. Electronic address:
Bispecific antibodies are an important tool for the management and treatment of acute leukemias. As a next step toward clinical translation of engineered plasma cells, we describe approaches for secretion of bispecific antibodies by human plasma cells. We show that human plasma cells expressing either fragment crystallizable domain-deficient anti-CD19 × anti-CD3 (blinatumomab) or anti-CD33 × anti-CD3 bispecific antibodies mediate T cell activation and direct T cell killing of B acute lymphoblastic leukemia or acute myeloid leukemia cell lines in vitro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!