Direct analysis in real time for reaction monitoring in drug discovery.

Anal Chem

Discovery Analytical Chemistry, Wyeth Research, Collegeville, Pennsylvania 19426, USA.

Published: July 2007

Direct analysis in real time (DART) is a novel ionization technique that provides for the rapid ionization of small molecules under ambient conditions. In this study, several commercially available drugs as well as actual compounds from drug discovery research were examined by LC/UV/ESI-MS and DART interfaced to a quadrupole mass spectrometer. For most compounds, the molecular ions observed by ESI-MS were observed by DART/MS. DART/MS was also studied as a means to quickly monitor synthetic organic reactions and to obtain nearly instantaneous molecular weight confirmations of final products in drug discovery. For simple, synthetic organic transformations, the trends in the intensities of the mass spectral signals for the reactant and product obtained by DART/MS scaled closely with those of the diode array or the total ion chromatogram obtained by LC/UV/ESI-MS. In summary, DART is a new tool that complements electrospray ionization for the rapid ionization and subsequent mass spectral analysis of compounds in drug discovery.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac070443mDOI Listing

Publication Analysis

Top Keywords

drug discovery
16
direct analysis
8
analysis real
8
real time
8
rapid ionization
8
compounds drug
8
synthetic organic
8
mass spectral
8
time reaction
4
reaction monitoring
4

Similar Publications

Current strategies centred on either merging or linking initial hits from fragment-based drug design (FBDD) crystallographic screens generally do not fully leaverage 3D structural information. We show that an algorithmic approach (Fragmenstein) that 'stitches' the ligand atoms from this structural information together can provide more accurate and reliable predictions for protein-ligand complex conformation than general methods such as pharmacophore-constrained docking. This approach works under the assumption of conserved binding: when a larger molecule is designed containing the initial fragment hit, the common substructure between the two will adopt the same binding mode.

View Article and Find Full Text PDF

Understanding the dynamics of membrane protein-ligand interactions within a native lipid bilayer is a major goal for drug discovery. Typically, cell-based assays are used, however, they are often blind to the effects of protein modifications. In this study, using the archetypal G protein-coupled receptor rhodopsin, we found that the receptor and its effectors can be released directly from retina rod disc membranes using infrared irradiation in a mass spectrometer.

View Article and Find Full Text PDF

Anti-furfurative comparison of Kesh Kanti-Herbal Shampoos and synthetic shampoos against Malassezia furfur for dandruff management.

AMB Express

January 2025

Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Near Bahadrabad, Haridwar, 249405, Uttarakhand, India.

Malassezia furfur is the primary etiological agent of dandruff (Pityriasis capitis). Although herbal shampoos are preferred for their natural, mild ingredients over synthetic counterparts, they are often perceived as less effective in managing flaky scalp conditions or furfuration causing dandruff. The study compares the antifungal efficacy of herbal and synthetic shampoos against M.

View Article and Find Full Text PDF

Cryoprotective agent (CPA) toxicity is the most limiting factor impeding cryopreservation of critically needed tissues and organs for transplantation and medical research. This limitation is in part due to the challenge of rapidly screening compounds to identify candidate molecules that are highly membrane permeable and non-toxic at high concentrations. Such a combination would facilitate rapid CPA permeation throughout the sample, enabling ice-free cryopreservation with minimal toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!