Similar Publications

Alzheimer's disease (AD) is associated with cognitive impairments which are linked to a deficit in cholinergic function. The objective of this study was to evaluate the ability of TeMac™ to prevent memory impairment in scopolamine-rats model of Alzheimer's disease and by in silico approaches to identify molecules in TeMac™ inhibiting acetylcholinesterase. The cholinergic cognitive dysfunction was induced by intraperitoneal injection of scopolamine (1 mg/kg daily) in male Wistar rats for seven consecutive days.

View Article and Find Full Text PDF

Purpose: To evaluate dynamic changes in ciliary parameters and Implantable Collamer Lens V4C (ICL) (STAAR Surgical) haptic position using mydriatic and miotic agents and their effects on the central and peripheral vault.

Methods: This study involved 80 eyes from 40 consecutive patients (mean age: 28.05 years; range: 19 to 42 years) examined 3 months after ICL implantation.

View Article and Find Full Text PDF

Xanomeline/Trospium Chloride: First Approval.

Drugs

January 2025

Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.

Xanomeline/trospium chloride (COBENFY™), formerly KarXT, is a first-in-class, oral, fixed-dose muscarinic agonist/antagonist combination being developed for use in schizophrenia and Alzheimer's disease psychosis. Xanomeline is thought to confer efficacy by acting as an agonist at M and M muscarinic acetylcholine receptors in the brain, and trospium chloride reduces the peripheral cholinergic adverse events associated with xanomeline. Xanomeline/trospium chloride received its first approval on 26 September 2024 in the USA for the treatment of schizophrenia in adults.

View Article and Find Full Text PDF
Article Synopsis
  • A meta-analysis was conducted to evaluate whether psychoplastogens like ketamine and psychedelics increase peripheral BDNF levels in humans, which have been suggested as biomarkers for neuroplasticity.
  • The analysis included data from 29 studies and found no significant evidence that these substances elevate peripheral BDNF levels, regardless of various factors such as drug type, dosage, or participant characteristics.
  • The findings imply that peripheral BDNF may not be a reliable marker for assessing neuroplasticity changes in humans after psychoplastogen administration, highlighting potential discrepancies between preclinical and human studies.
View Article and Find Full Text PDF

Purpose: Anticholinergic drugs can cause adverse events (AEs) in older adults. Clinical decision support systems (CDSSs) can detect prescriptions with a high anticholinergic load. Our starting hypothesis was that the anticholinergic load could be reduced by combining a CDSS with a strategy for generating pharmacist interventions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!