It has been shown that a human salivary gland cell line (HSG) is capable of differentiation into gland-like structures, though little is known of how morphological features are formed or controlled. Here we investigated the changes in cell proliferation and apoptosis upon terminal differentiation of HSG cells in Matrigel, an extracellular matrix derivative. Changes in the expression of survivin, a prominent anti-apoptotic factor, and caspase-3, a key apoptotic factor were also measured. In order to better understand the involvement of key signal transduction pathways in this system we pharmacologically blocked the activity of tyrosine kinase, nuclear factor kappa B(NF kappa B), protein kinase C (PKC), phosphatidylinositol 3-kinase (PI3K) and matrix metalloproteases (MMP). Results of these studies demonstrate that cytodifferentiation of HSG cells to an acinar phenotype is accompanied first by a decrease of cell proliferation and then by a massive programmed cell death, affected by multiple signal transduction pathways. Thus, Matrigel alone is insufficient for the full maturation and long term survival of the newly formed acini: the presence of other factors is necessary to complete the acinar differentiation of HSG cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.21404 | DOI Listing |
Phys Med Biol
January 2025
Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
The tumor microenvironment characterized by heterogeneously organized vasculatures causes intra-tumoral heterogeneity of oxygen partial pressurepat the cellular level, which cannot be measured by current imaging techniques. The intra-tumoral cellularpheterogeneity may lead to a reduction of therapeutic effects of radiation. The purpose of this study was to investigate the effects of the heterogeneity on biological effectiveness of H-, He-, C-, O-, and Ne-ion beams for different oxygenation levels, prescribed dose levels, and cell types.
View Article and Find Full Text PDFA novel copper-dependent mode of death, cuproptosis, has been newly identified. This study developed a cuproptosis score (CS) based on the cuproptosis model to analyse the association of CS with prognosis, immune cell infiltration, drug sensitivity and immunotherapy response in hepatocellular carcinoma (HCC) patients. A typing model of cuproptosis was constructed based on the expression of 19 cuproptosis-related genes (CRGs).
View Article and Find Full Text PDFJ Cell Physiol
November 2024
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
The development of the salivary gland (SG) is a complex process regulated by multiple signaling pathways in a spatiotemporal manner. Various stem/progenitor cell populations and respective cell lineages are involved in SG morphogenesis and postnatal maturation. Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) has been identified as critical regulator of stem cells by virtue of its ability to restrain stem cell proliferation, indicating its potential role in the development of several maxillofacial tissues and in the regulation of the quiescence in adult tissues.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Radiation Oncology, Shonan Kamakura General Hospital, 1370-1, Okamoto, Kamakura, Kanagawa, 247-8533, Japan.
Thermal neutrons generated in the body during proton beam therapy (PBT) can be used to cause boron neutron capture reactions and have recently been proposed as neutron capture enhanced PBT (NCEPBT). However, the cell killing effect of NCEPBT remains underexplored. Here, we show an increase in the cell killing effect of NCEPBT.
View Article and Find Full Text PDFbioRxiv
October 2024
Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD 20899, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!