AI Article Synopsis

  • The amyloid beta peptide is key in Alzheimer's disease development, formed by the breakdown of amyloid precursor protein through enzyme activity.
  • Inhibition of the beta-secretase enzyme, crucial for generating amyloid beta, presents a potential strategy for treating Alzheimer's.
  • The study introduces new assays using casein-FITC and BAPNA for high-throughput screening of BACE-1 inhibitors, demonstrating these substrates are more effective than traditional ones.

Article Abstract

The amyloid beta (Abeta) peptide is responsible for toxic amyloid plaque formation and is central to the aetiology of Alzheimer's disease (AD). It is generated by proteolytic processing of the amyloid precursor protein (APP) by beta-secretase (BACE-1) and gamma-secretase. Consequently, inhibition of BACE-1, a rate-limiting enzyme in the production of Abeta, is an attractive therapeutic approach to the treatment of Alzheimer's disease. This paper reports on improved microtiter plate-based fluorescence and colorimetric assays for the high-throughput screening (HTS) of BACE-1 inhibitors achieved by employing, for the first time, casein fluorescein isothiocyanate (casein-FITC) and N-alpha-benzoyl-D,L-arginine p-nitroanilide (BAPNA) as substrates, since they are known to be readily available and convenient substrates for proteases. The methods are based on the fluorescence enhancement following casein-FITC proteolysis and the visible absorbance of the p-nitroaniline (pNA) produced by BAPNA hydrolysis, with both reactions catalysed by BACE-1. Casein-FITC is a high-affinity substrate (K (m) = 110 nM) for BACE-1, more so than the Swedish (SW) type peptide (a peptide containing the Swedish mutant of APP, a familiar mutation that enhances Abeta production). BACE-1 catalysis of casein-FITC proteolysis exhibited Michaelis-Menten kinetic. Therefore, it was found that BACE-1 was saturable with casein-FITC that was processed in a time- and pH-dependent manner with greater catalytic efficiency than observed for the SW peptide. The enantioselective hydrolysis of L-BAPNA by BACE-1 was observed. L-BAPNA was hydrolysed ten times more efficiently by BACE-1 than the WT (wild-type peptide). The novel methods were validated using a FRET assay as an independent reference method. Therefore, in order to select new leads endowed with multifunctional activities, drugs for Alzheimer's disease (AD) - potent acetylcholinesterase (AChE) inhibitors - were tested for BACE-1 inhibition using the proposed validated assays. Among these, donepezil, besides being an acetylcholinesterase inhibitor, was also found to be a BACE-1 inhibitor that displayed submicromolar potency (170 nM).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-007-1356-2DOI Listing

Publication Analysis

Top Keywords

bace-1
12
alzheimer's disease
12
beta-secretase bace-1
8
bace-1 inhibitors
8
casein-fitc proteolysis
8
peptide
5
casein-fitc
5
multiwell fluorometric
4
fluorometric colorimetric
4
colorimetric microassays
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!