Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Herpes simplex-1 (HSV-1) is a sporadic cause of viral encephalitis. We have previously demonstrated that corneal HSV inoculation markedly activates the hypothalamo-pituitary-adrenal (HPA) axis. This activation depends on host derived brain interleukine-1 and was resistant to pretreatment with dexamethasone (dex), possibly because immune factors such as pro-inflammatory cytokines can modify the binding capacity of glucocorticoids in the hippocampus. In the present study, we examined whether resistance of the HPA axis activation following intracerebral HSV-1 infection to dex-induced suppression is associated with modifications in hippocampal or pituitary glucocorticoids (GC) receptors or GC receptors in cultured astrocytes. Male rats were injected intracerebroventricularly with purified HSV-1 or vehicle. 48 h later, dex or vehicle was injected intraperitoneally. Rats were sacrificed 3.5 h later. ACTH and corticosterone (CS) were measured in the serum. Specific binding of 3H-dex was measured in the cytosolic fraction of the hippocampus and the pituitary. Dex failed to reduce ACTH and CS responses to HSV-1 infection. In contrast, dex significantly reduced ACTH and CS responses to acoustic neural stimuli. Infection with HSV-1 markedly reduced the hippocampal maximal specific binding of dex with no effect on the dissociation constant (Kd) values. HSV-1 had no effect on the binding of dex in the pituitary. Infection of cultured astrocytes with HSV-1 also reduced the maximal specific binding of dex, but increased the Kd value. The results suggest that HSV-1 induced GC resistance may be mediated by downregulation of GC receptors in hippocampal tissue. These results may clarify a mechanism responsible for GC resistance following immune challenges.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000102976 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!