Facile discrimination of aldose enantiomers by reversed-phase HPLC.

Chem Pharm Bull (Tokyo)

Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.

Published: June 2007

One-pot reactions of aldoses with L-cysteine methyl ester and o-tolyl isothiocyanate yielded methyl 2-(polyhydroxyalkyl)-3-(o-tolylthiocarbamoyl)-thiazolidine-4(R)-carboxylates. Direct HPLC analysis of the reaction mixture and UV detection at 250 nm discriminated D- and L-enantiomers of aldoses. The reaction was applied to the determination of absolute configuration the sugar residues of an aroma precursor.

Download full-text PDF

Source
http://dx.doi.org/10.1248/cpb.55.899DOI Listing

Publication Analysis

Top Keywords

facile discrimination
4
discrimination aldose
4
aldose enantiomers
4
enantiomers reversed-phase
4
reversed-phase hplc
4
hplc one-pot
4
one-pot reactions
4
reactions aldoses
4
aldoses l-cysteine
4
l-cysteine methyl
4

Similar Publications

D-Histidine modulated chiral metal-organic frameworks for discriminating 3,4-Dihydroxyphenylalanine enantiomers based on a chemiluminescence quenching mode.

Anal Chim Acta

February 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China. Electronic address:

Background: Drug enantiomers often display distinguishable or even opposite pharmacological and toxicologic activities. Therefore it is of great necessity to discriminate enantiomers for guaranteeing safetyness and effectiveness of chiral drugs. Facile chiral discrimination has long been a noticeable challenge because of the minimal differences in physicochemical properties of enantiomers.

View Article and Find Full Text PDF

Precise identification and analysis of multiple protein biomarkers on the surface of breast cancer cell-derived extracellular vesicles (BC-EVs) are of great significance for noninvasive diagnosis of the breast cancer subtypes, but it remains a major challenge owing to their high heterogeneity and low abundance. Herein, we established a CRISPR-based homogeneous electrochemical strategy for near-zero background and ultrasensitive detection of BC-EVs. To realize the high-performance capture and isolation of BC-EVs, fluidity-enhanced magnetic nanoprobes were facilely prepared.

View Article and Find Full Text PDF

Unveiling urinary extracellular vesicle mRNA signature for early diagnosis and prognosis of bladder cancer.

Theranostics

January 2025

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.

Bladder cancer (BC) ranks as one of the most prevalent cancers. Its early diagnosis is clinically essential but remains challenging due to the lack of reliable biomarkers. Extracellular vesicles (EVs) carry abundant biological cargoes from parental cells, rendering them as promising cancer biomarkers.

View Article and Find Full Text PDF

A Chiral Sensing Platform Based on a Starfish-Shaped AuCu Alloy for Chiral Analysis.

Anal Chem

January 2025

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.

Designing alloys with intrinsic chirality for chiral analysis is an interesting subject, since most alloys are achiral. Here, a starfish-shaped AuCu alloy is facilely prepared through simultaneous reduction of chloroauric acid (HAuCl) and copper chloride (CuCl) by l-ascorbic acid (l-AA). The resultant AuCu alloy exhibits fascinating chirality due to the chiral lattice distortion generated in the alloy.

View Article and Find Full Text PDF

Molecular diagnosis limitations, including complex treatment processes, low cost-effectiveness, and operator-dependent low reproducibility, interrupt the timely prevention of disease spread and the development of medical devices for home and outdoor uses. A newly fabricated gold nanopillar array-based film is presented for superior photothermal energy conversion. Magnifying the metal film surface-to-volume ratio increases the photothermal energy conversion efficiency, resulting in a swift reduction in the gene amplification reaction time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!