Nitric oxide in the pulmonary vasculature.

Arterioscler Thromb Vasc Biol

Cardiology Division, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA.

Published: September 2007

Homeostasis in the pulmonary vasculature is maintained by the actions of vasoactive compounds, including nitric oxide (NO). NO is critical for normal development of the pulmonary vasculature and continues to mediate normal vasoregulation in adulthood. Loss of NO bioavailability is one component of the endothelial dysfunction and vascular pathology found in pulmonary hypertension (PH). A broad research effort continues to expand our understanding of the control of NO production and NO signaling and has generated novel theories on the importance of pulmonary NO production in the control of the systemic vasculature. This understanding has led to exciting developments in our ability to treat PH, including inhaled NO and phosphodiesterase inhibitors, and to several promising directions for future therapies using nitric oxide-donor compounds, stimulators of soluble guanylate cyclase, progenitor cells expressing NO synthase (NOS), and NOS gene manipulation.

Download full-text PDF

Source
http://dx.doi.org/10.1161/ATVBAHA.107.142943DOI Listing

Publication Analysis

Top Keywords

pulmonary vasculature
12
nitric oxide
8
pulmonary
5
oxide pulmonary
4
vasculature
4
vasculature homeostasis
4
homeostasis pulmonary
4
vasculature maintained
4
maintained actions
4
actions vasoactive
4

Similar Publications

Introduction: Ischaemic heart disease (IHD) and cerebrovascular disease are leading causes of morbidity and mortality worldwide. Cerebral small vessel disease (CSVD) is a leading cause of dementia and stroke. While coronary small vessel disease (coronary microvascular dysfunction) causes microvascular angina and is associated with increased morbidity and mortality.

View Article and Find Full Text PDF

Background: Systemic sclerosis (SSc) is a rare connective tissue disease, frequently affecting the skin, lungs, and pulmonary vasculature. Approximately 30-50% of SSc patients develop interstitial lung disease (SSc-ILD), with 30-35% of related deaths attributed to it. Even though men are less likely to develop systemic sclerosis, they have a higher incidence of SSc-ILD than women, and they tend to develop it at a younger age with a higher mortality rate.

View Article and Find Full Text PDF

Microthrombus formation is associated with COVID-19 severity; however, the detailed mechanism remains unclear. In this study, we investigated mouse models with severe pneumonia caused by SARS-CoV-2 infection by using our in vivo two-photon imaging system. In the lungs of SARS-CoV-2-infected mice, increased expression of adhesion molecules in intravascular neutrophils prolonged adhesion time to the vessel wall, resulting in platelet aggregation and impaired lung perfusion.

View Article and Find Full Text PDF

Mechanisms of immunotherapy resistance in small cell lung cancer.

Cancer Drug Resist

December 2024

Department of Medical Oncology, Yale School of Medicine, New Haven, CT 06510, USA.

Small-cell lung cancer (SCLC) is an aggressive neuroendocrine tumor with a poor prognosis. Although the addition of immunotherapy to chemotherapy has modestly improved outcomes, most patients rapidly develop resistance. Resistance to immunotherapy can be broadly categorized into primary resistance and acquired resistance, as proposed by the Society for Immunotherapy of Cancer (SITC) consensus definition.

View Article and Find Full Text PDF

The presentation of pulmonary vasculature in pulmonary atresia with ventricular septal defect and major aortopulmonary collateral arteries (PA/VSD/MAPCA) is highly variable-as is the number, size and position of the MAPCAs and their relationship with the native pulmonary artery system. The priority in the management of this disease should be attaining timely and complete unifocalization, as opposed to single-stage full repair in every case. The merit of early unifocalization is that it secures the pulmonary vascular bed by (a) avoiding loss of lung segments from progressive stenosis/atresia of MAPCA origins, (b) preventing lung injury from high pressure/flow in areas fed by large, unobstructed MAPCAs, and (c) restoring central continuity of the pulmonary vasculature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!