Endochondral bone formation is involved in media calcification in rats and in men.

Kidney Int

Department of Pathophysiology, University of Antwerp, Universiteitsplein 1, 2619 Wilrijk, Belgium.

Published: September 2007

Arterial media calcification is often considered a cell-regulated process resembling intramembranous bone formation, implying a conversion of vascular tissue into a bone-like structure without a cartilage intermediate. In this study, we examined the association of chondrocyte-specific marker expression with media calcification in arterial samples derived from rats with chronic renal failure (CRF) and from human transplant donors. CRF was induced in rats with a diet supplemented with adenine. Vascular calcification was evaluated histomorphometrically on Von Kossa-stained sections and the expression of the chondrocyte markers sox9 and collagen II with the osteogenic marker core-binding factor alpha1 (cbfa1) was determined immunohistochemically. Media calcification was detected in more than half of the rats with CRF. In over half of the rats with severe media calcification, a typical cartilage matrix was found by morphology. All of the animals with severe calcification showed the presence of chondrocyte-like cells expressing the markers sox9, collagen II, and cbfa1. Human aorta specimens showing mild to moderate media calcification also showed sox9, collagen II, and cbfa1 expression. The presence of chondrocytes in association with calcification of the media in aortas of rats with CRF mimics endochondral bone formation. The relevance of this association is further demonstrated by the chondrogenic conversion of medial smooth muscle cells in the human aorta.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.ki.5002353DOI Listing

Publication Analysis

Top Keywords

media calcification
24
bone formation
12
sox9 collagen
12
calcification
9
endochondral bone
8
markers sox9
8
half rats
8
rats crf
8
collagen cbfa1
8
human aorta
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!