Immobilization of the type XIV myosin complex in Toxoplasma gondii.

Mol Biol Cell

Department of Cell and Developmental Biology, The University of North Carolina, Chapel Hill, NC 27599-7090, USA.

Published: August 2007

The substrate-dependent movement of apicomplexan parasites such as Toxoplasma gondii and Plasmodium sp. is driven by the interaction of a type XIV myosin with F-actin. A complex containing the myosin-A heavy chain, a myosin light chain, and the accessory protein GAP45 is attached to the membranes of the inner membrane complex (IMC) through its tight interaction with the integral membrane glycoprotein GAP50. For the interaction of this complex with F-actin to result in net parasite movement, it is necessary that the myosin be immobilized with respect to the parasite and the actin with respect to the substrate the parasite is moving on. We report here that the myosin motor complex of Toxoplasma is firmly immobilized in the plane of the IMC. This does not seem to be accomplished by direct interactions with cytoskeletal elements. Immobilization of the motor complex, however, does seem to require cholesterol. Both the motor complex and the cholesterol are found in detergent-resistant membrane domains that encompass a large fraction of the inner membrane complex surface. The observation that the myosin XIV motor complex of Toxoplasma is immobilized within this cholesterol-rich membrane likely extends to closely related pathogens such as Plasmodium and possibly to other eukaryotes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1949363PMC
http://dx.doi.org/10.1091/mbc.e07-01-0040DOI Listing

Publication Analysis

Top Keywords

motor complex
16
complex toxoplasma
12
complex
9
type xiv
8
xiv myosin
8
toxoplasma gondii
8
inner membrane
8
membrane complex
8
myosin
6
membrane
5

Similar Publications

This proceedings article summarizes the inaugural "T Cells in the Brain" symposium held at Columbia University. Experts gathered to explore the role of T cells in neurodegenerative diseases. Key topics included characterization of antigen-specific immune responses, T cell receptor (TCR) repertoire, microbial etiology in Alzheimer's disease (AD), and microglia-T cell crosstalk, with a focus on how T cells affect neuroinflammation and AD biomarkers like amyloid beta and tau.

View Article and Find Full Text PDF

Background And Hypothesis: We have reported previously a reduction in superior temporal gyrus (STG) activation and in auditory verbal hallucinations (AHs) after real-time fMRI neurofeedback (NFB) in schizophrenia patients with AHs.

Study Design: With this randomized, participant-blinded, sham-controlled trial, we expanded our previous results. Specifically, we examined neurofeedback effects from the STG, an area associated with auditory hallucinations.

View Article and Find Full Text PDF

The folded auto-inhibited state of kinesin-1 is stabilized by multiple weak interactions and binds weakly to microtubules. Here we investigate the extent to which homodimeric kinesin-1 lacking light chains is activated by the dynein activating adaptor BicD. We show that one or two kinesins can bind to the central region of BicD (CC2), a region distinct from that which binds dynein-dynactin (CC1) and cargo-adaptor proteins (CC3).

View Article and Find Full Text PDF

Cytoplasmic dynein is an essential microtubule motor protein that powers organelle transport and mitotic spindle assembly. Its activity depends on dynein-dynactin-cargo adaptor complexes, such as dynein-dynactin-BicD2 (DDB), which typically function with two dynein motors. We show that mechanical tension recruits a third dynein motor via an auxiliary BicD adaptor binding the light intermediate chain of the third dynein, stabilizing multi-dynein assemblies and enhancing force generation.

View Article and Find Full Text PDF

The Effect of Cognitive-Motor Dual Tasks on the Risk of Falls in Female Saudi Students: A Cross-Sectional Study.

Risk Manag Healthc Policy

January 2025

Department of Medical Rehabilitation Science, Faculty of Applied Medical Sciences, Umm Al-Qura University-Makkah-Saudi Arabia; Cairo University, Cairo, Egypt.

Introduction: Dual tasking (DT) requires individuals to carry out two actions simultaneously, comparable to how the brain can perform a cognitive function while the body is in motion, which eventually enhances human balance. This paper aims to examine and compare the impact of DT on the risk of falling (ROF) among Saudi female students.

Methods: A cross-sectional design was used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!