One of the best-known dichotomies in neuroscience is the division of neurons in the mammalian primary visual cortex into simple and complex cells. Simple cells have receptive fields with separate on and off subregions and give phase-sensitive responses to moving gratings, whereas complex cells have uniform receptive fields and are phase invariant. The phase sensitivity of a cell is calculated as the ratio of the first Fourier coefficient (F1) to the mean time-average (Fo) of the response to moving sinusoidal gratings at 100% contrast. Cells are then classified as simple (F1/Fo >1) or complex (F1/Fo <1). We manipulated cell responses by changing the stimulus contrast or through adaptation. The F(1)/F(0) ratios of cells defined as complex at 100% contrast increased at low contrasts and following adaptation. Conversely, the F1/Fo ratios remained constant for cells defined as simple at 100% contrast. The latter cell type was primarily located in thalamorecipient layers 4 and 6. Many cells initially classified as complex exhibit F1/Fo >1 at low contrasts and after adaptation (particularly in layer 4). The results are consistent with the spike-threshold hypothesis, which suggests that the division of cells into two types arises from the nonlinear interaction of spike threshold with membrane potential responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.00433.2007 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China.
Chromobox 2 (CBX2), a crucial component of the polycomb repressive complex (PRC), has been implicated in the development of various human cancers. However, its role in the regulation of tumor immunogenicity and immune evasion remains inadequately understood. In this study, we found that ablation of CBX2 led to tumor growth inhibition, activation of the tumor immune microenvironment, and enhanced therapeutic efficacy of anti-PD1 or adoptive T cell therapies by using murine syngeneic tumor models.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
State Key Laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai 200438, China.
Aging is a complex process that affects multiple organs, and the discovery of a pharmacological approach to ameliorate aging is considered the Holy Grail of medicine. Here, we performed an N-ethyl-N-nitrosourea forward genetic screening in zebrafish and identified an accelerated aging mutant named (), harboring a mutation in the - () gene. Loss of leads to a short lifespan and age-related characteristics in the intestine of zebrafish embryos, such as cellular senescence, genomic instability, and epigenetic alteration.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.
The ionizable lipid component of lipid nanoparticle (LNP) formulations is essential for mRNA delivery by facilitating endosomal escape. Conventionally, these lipids are synthesized through complex, multistep chemical processes that are both time-consuming and require significant engineering. Furthermore, the development of new ionizable lipids is hindered by a limited understanding of the structure-activity relationships essential for effective mRNA delivery.
View Article and Find Full Text PDFCirc Res
January 2025
Division of Cardiovascular Medicine, Department of Medicine (J.B.H., J.D.B., A.C.D.), Vanderbilt University Medical Center, Nashville, TN.
Cardiovascular and cardiometabolic diseases are leading causes of morbidity and mortality worldwide, driven in part by chronic inflammation. Emerging research suggests that the bone marrow microenvironment, or marrow niche, plays a critical role in both immune system regulation and disease progression. The bone marrow niche is essential for maintaining hematopoietic stem cells (HSCs) and orchestrating hematopoiesis.
View Article and Find Full Text PDFScience
January 2025
Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
Social animals live in groups and interact volitionally in complex ways. However, little is known about neural responses under such natural conditions. Here, we investigated hippocampal CA1 neurons in a mixed-sex group of five to 10 freely behaving wild Egyptian fruit bats that lived continuously in a laboratory-based cave and formed a stable social network.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!