PrimerZ (http://genepipe.ngc.sinica.edu.tw/primerz/) is a web application dedicated primarily to primer design for genes and human SNPs. PrimerZ accepts genes by gene name or Ensembl accession code, and SNPs by dbSNP rs or AFFY_Probe IDs. The promoter and exon sequence information of all gene transcripts fetched from the Ensembl database (http://www.ensembl.org) are processed before being passed on to Primer3 (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) for individual primer design. All results returned from Primer 3 are organized and integrated in a specially designed web page for easy browsing. Besides the web page presentation, csv text file export is also provided for enhanced user convenience. PrimerZ automates highly standard but tedious gene primer design to improve the success rate of PCR experiments. More than 2000 primers have been designed with PrimerZ at our institute since 2004 and the success rate is over 70%. The addition of several new features has made PrimerZ even more useful to the research community in facilitating primer design for promoters, exons and SNPs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1933185PMC
http://dx.doi.org/10.1093/nar/gkm383DOI Listing

Publication Analysis

Top Keywords

primer design
20
design promoters
8
promoters exons
8
human snps
8
snps primerz
8
success rate
8
primerz
6
primer
6
design
5
primerz streamlined
4

Similar Publications

Krait2: a versatile software for microsatellite investigation, visualization and marker development.

BMC Genomics

January 2025

Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610225, China.

Background: Microsatellites are highly polymorphic repeat sequences ubiquitously interspersed throughout almost all genomes which are widely used as powerful molecular markers in diverse fields. Microsatellite expansions play pivotal roles in gene expression regulation and are implicated in various neurological diseases and cancers. Although much effort has been devoted to developing efficient tools for microsatellite identification, there is still a lack of a powerful tool for large-scale microsatellite analysis.

View Article and Find Full Text PDF

Development of two recombinase-aided amplification assays combined with lateral flow dipstick (RAA-LFD) and real-time fluorescence (RF-RAA) for the detection of Frog virus 3-like ranaviruses.

Fish Shellfish Immunol

January 2025

Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Key Laboratory of Exploration and Utilization of Aquatic genetic Resources, Ministry of Education, International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China. Electronic address:

Frog virus 3-like ranaviruses (FV3-like viruses), particularly FV3 (Frog virus 3), represent typical species within the genus Ranavirus, primarily infecting amphibians and reptiles, thereby posing serious threats to aquaculture and biodiversity conservation. We designed a pair of universal primers and a probe targeting the conserved region of the major capsid protein (MCP) genes of FV3-like viruses. By integrating recombinase-aided amplification (RAA) with lateral flow dipstick (LFD) technology and real-time fluorescence (RF) modification, we established RAA-LFD and RF-RAA assays.

View Article and Find Full Text PDF

P3 site-directed mutagenesis: An efficient method based on primer pairs with 3'-overhangs.

J Biol Chem

January 2025

Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada; McGill University Health Center, Montreal, Quebec H3A 1A3, Canada. Electronic address:

Site-directed mutagenesis is a fundamental tool indispensable for protein and plasmid engineering. An important technological question is how to achieve the efficiency at the ideal level of 100%. Based on complementary primer pairs, the QuickChange method has been widely used, but it requires significant improvements due to its low efficiency and frequent unwanted mutations.

View Article and Find Full Text PDF

Engineering thermostable fluorescent DNA aptamer for the isothermal amplification of nucleic acids.

Biosens Bioelectron

January 2025

Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China. Electronic address:

Isothermal amplification-based nucleic acid detection technologies have become rapid and efficient tools for molecular diagnostics. Sequence-specific monitoring methods are crucial for isothermal amplification, as they help identify the occurrence of extended primer dimers, which can lead to false positive results. Fluorescent aptamers are promising tools for real-time monitoring of isothermal amplification but are inherently limited by thermostability.

View Article and Find Full Text PDF

Discovery of Novel Diagnostic Biomarkers for Common Pathogenic Through Pan-Genome and Comparative Genome Analysis, with Preliminary Validation.

Pathogens

January 2025

Department of Clinical Laboratory, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Institute, Capital Medical University, Beijing 101100, China.

The aim of this study was to reveal diagnostic biomarkers of considerable importance for common pathogenic , utilizing pan-genomic and comparative genome analysis to accurately characterize clinical infections. In this study, complete or assembled genome sequences of common pathogenic and closely related species were obtained from NCBI as discovery and validation sets, respectively. Genome annotation was performed using Prokka software, and pan-genomic analysis and extraction of core genes were performed using BPGA software.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!