Wolbachia are maternally inherited endosymbiotic alpha-Proteobacteria infecting a wide range of arthropods. Wolbachia induce feminization in many terrestrial isopod species, particularly in the genus Armadillidium (Crustacea, Oniscidea). The diversity of Wolbachia strains infecting Armadillidium species was examined. Results reveal that natural populations of A. vulgare contain three different Wolbachia strains (wVulC, wVulM and wVulP). The wsp gene and its 3'-adjacent region show evidence that two recombination events have occurred between two of these strains. In both cases, multiple statistical analyses suggest that a small gene fragment of a strain closely related to wVulM (minor parent) is inserted into the genome of another strain closely related to wVulC (major parent). Although multiple infections in a single individual have never been demonstrated in natural population, the existence of recombination between feminizing strains suggests that bi-infections are possible, or at least that bi-infections can be maintained sufficiently long enough to allow recombination. Recombination events increase genetic diversity of Wolbachia found in Armadillidium species and may play a role in the ability of Wolbachia strains to invade new hosts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2007.04.006 | DOI Listing |
Acta Trop
December 2024
Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77554, USA.
Mosquito-borne diseases pose a significant threat to global health, and traditional mosquito control methods often fall short of effectiveness. A promising alternative is the biological control strategy of transinfecting mosquitoes with Wolbachia, a bacterium capable of outcompeting harmful pathogens and reducing the ability of mosquitoes to transmit diseases. However, Wolbachia infections are sensitive to abiotic environmental factors such as temperature and humidity, which can affect their densities in mosquitoes and, consequently, their ability to block pathogens.
View Article and Find Full Text PDFVet Res Commun
December 2024
Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
Wolbachia is an intracellular endosymbiont bacterium found in nematodes and arthopods. Regarding mites, the Wolbachia supergroup U has been described based on strains found in the genus Spinturnix. In this study, ten specimens of Periglischrus iheringi (Mesostigmata: Spinturnicidae), collected from Artibeus obscurus (Chiroptera: Phyllostomidae) in Santa Catarina State, were found to be infected with Wolbachia.
View Article and Find Full Text PDFG3 (Bethesda)
December 2024
Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, CEP 05508-090, São Paulo, SP, Brazil.
Tetrapedia diversipes is a Neotropical solitary bee commonly found in trap-nests, known for its morphological adaptations for floral oil collection and prepupal diapause during the cold and dry season. Here, we present the genome assembly of T. diversipes (332 Mbp), comprising 2,575 scaffolds, with 15,028 predicted protein-coding genes.
View Article and Find Full Text PDFFront Insect Sci
December 2024
Department of Plant Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan.
The horizontal transmission of endosymbionts between hosts and parasitoids plays a crucial role in biological control, yet its mechanisms remain poorly understood. This study investigates the dynamics of horizontal transfer of (Ccep) from the rice moth, , to its parasitoid, . Through PCR detection and phylogenetic analysis, we demonstrated the presence of identical Ccep strains in both host and parasitoid populations, providing evidence for natural horizontal transmission.
View Article and Find Full Text PDFParasit Vectors
December 2024
Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008, Lisbon, Portugal.
Background: Culex quinquefasciatus plays a crucial role as a vector of West Nile virus (WNV). This mosquito species is widely distributed in Cape Verde, being found in all inhabited islands of the archipelago. However, no data are currently available on the susceptibility of the local mosquito population to WNV.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!