Biochemical and biological characterization of the venoms of Bothriopsis bilineata and Bothriopsis taeniata (Serpentes: Viperidae).

Toxicon

Laboratório de Inflamação e Imunidade, Depto. de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS Bloco I, sala 059, Ilha do Fundão, 21.941-902 Rio de Janeiro--RJ, Brazil.

Published: August 2007

Snake venom is a complex mixture containing diverse protein components with different structures and functions that are used for prey immobilization and death. Snake venoms from the family Viperidae cause pronounced local and systemic effects, such as pain, edema, hemorrhage and necrosis. Here, we investigated the enzymatic and biological activities of venoms from two Amazonian snakes, Bothriopsis bilineata and Bothriopsis taeniata. Both venoms presented high enzymatic activities for proteases kallikrein, thrombin and plasmin, low levels of trypsin, cathepsin C and leucine aminopeptidase activities, while lacked acetylcholinesterase activity. B. taeniata and B. bilineata crude venoms caused inflammation inducing neutrophil recruitment into peritoneal cavity of mice 4h after injection. Neutrophil recruitment induced by B. taeniata venom was accompanied by hemorrhage. EDTA treatment profoundly impaired neutrophil recruitment, suggesting the involvement of a metalloproteinase on venoms-induced neutrophil recruitment. Pretreatment with dexamethasone and zileuton, a 5-lipoxygenase inhibitor, significantly reduced neutrophil migration, but indomethacin and montelukast, a cysteinyl leukotriene receptor antagonist, had no effect, suggesting the involvement of lipoxygenase-derived metabolites, probably LTB(4). Together, these results show that B. bilineata and B. taeniata venoms induce a marked inflammatory reaction, with leukocyte recruitment, and hemorrhage, which parallels to a high proteolytic activity found in these venoms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxicon.2007.03.020DOI Listing

Publication Analysis

Top Keywords

neutrophil recruitment
16
bothriopsis bilineata
8
bilineata bothriopsis
8
bothriopsis taeniata
8
taeniata venoms
8
suggesting involvement
8
venoms
7
taeniata
5
neutrophil
5
recruitment
5

Similar Publications

Histological healing in IBD: Ready for prime time?

Dig Liver Dis

January 2025

Gastroenterology and Hepatology Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.

The main target of treatment in ulcerative colitis and Crohn's disease is to achieve a complete so-called mucosal healing. Various definitions of mucosal healing are available in literature, and the most recent ones include a combination of endoscopic and histological remission. However, the assessment of a complete histological remission is not always univocal.

View Article and Find Full Text PDF

Inflammasome Activation and Neutrophil Extracellular Traps in Atherosclerosis.

J Atheroscler Thromb

January 2025

Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University.

The deposition of cholesterol containing cholesterol crystals and the infiltration of immune cells are features of atherosclerosis. Although the role of cholesterol crystals in the progression of atherosclerosis have long remained unclear, recent studies have clarified the involvement of cholesterol crystals in inflammatory responses. Cholesterol crystals activate the NLRP3 inflammasome, a molecular complex involved in the innate immune system.

View Article and Find Full Text PDF

Rare earth element erbium induces immune toxicity through the ROS/NF-κB pathway in zebrafish.

Fish Shellfish Immunol

January 2025

Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China. Electronic address:

The large-scale mining and utilization of rare earth elements have significantly increased their concentration in the environment, especially in regions surrounding mining areas. These environmentally-enriched rare earth elements accumulate in agricultural products and organisms through soil and water, potentially impacting in human health through the food chain. Erbium (Er), a rare earth element of the lanthanide series (Group IIIB), plays a crucial role in various modern technological applications.

View Article and Find Full Text PDF

Neutrophils play key protective roles in influenza infections, yet excessive neutrophilic inflammation is a hallmark of acute lung injury during severe infections. Phenotypic heterogeneity is increasingly recognized in neutrophil populations; however, how functional variation in neutrophils between individuals determine the diverse outcomes of influenza remains unclear. To examine immunologic responses that may drive varying outcomes in influenza, we infected C57BL/6 (B6) and A/J mice with mouse-adapted influenza A virus A/PR/8/34 H1N1.

View Article and Find Full Text PDF

Framework Nucleic Acid-Based and Neutrophil-Based Nanoplatform Loading Baicalin with Targeted Drug Delivery for Anti-Inflammation Treatment.

ACS Nano

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.

Targeted drug delivery is a promising strategy for treating inflammatory diseases, with recent research focusing on the combination of neutrophils and nanomaterials. In this study, a targeted nanodrug delivery platform (Ac-PGP-tFNA, APT) was developed using tetrahedral framework nucleic acid (tFNA) along with a neutrophil hitchhiking mechanism to achieve precise delivery and anti-inflammatory effects. The tFNA structure, known for its excellent drug-loading capacity and cellular uptake efficiency, was used to carry a therapeutic agent─baicalin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!