Compartmental analysis in photophysics: kinetics and identifiability of models for quenching of fluorescent probes in micelles.

Math Biosci

Department of Chemistry and Institute for Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200f - bus 02404, 3001 Heverlee, Belgium.

Published: October 2007

The parameters describing the kinetics of excited-state processes can possibly be recovered by analysis of the fluorescence decay surface measured as a function of the experimental variables. The identifiability analysis of a photophysical model assuming errorless time-resolved fluorescence data can verify whether the model parameters can be determined. In this work, we have used the methods of similarity transformation and Taylor series to investigate the identifiability of two models utilized to describe the time-resolved fluorescence quenching of stationary probes in micelles. The first model assumes that exchange of the quencher between micelles is much slower than the fluorescence decay of the unquenched probe (the 'immobile' quencher model). The second model assumes that quenchers exchange between the aqueous and micellar phases (the 'mobile' quencher model). For the 'immobile' quencher model, the rate constants for deactivation (k(0)) and quenching (k(q)) of the excited probe are uniquely identified together with the average number of quencher molecules per micelle. For the 'mobile' quencher model, the rate constants k(0) and k(q) are uniquely identified, as are the rate constants for entry (k(+)) and exit (k(-)) of one quencher molecule into and from a micelle, and the micellar aggregation number. The concomitant rate equations describing the time-resolved fluorescence are solved using z-transforms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mbs.2007.04.006DOI Listing

Publication Analysis

Top Keywords

quencher model
16
time-resolved fluorescence
12
rate constants
12
identifiability models
8
probes micelles
8
fluorescence decay
8
model
8
model assumes
8
'immobile' quencher
8
'mobile' quencher
8

Similar Publications

This study describes an intramolecular quenching assay to evaluate gamma-secretase (GS) enzyme activity in human dermal cells. The method utilizes a fluorogenic peptide substrate, mimicking a fragment of amyloid precursor protein (APP), in which a quencher suppresses the fluorescence of a fluorophore until enzymatic cleavage occurs, resulting in a measurable increase in fluorescence. This real-time, direct measurement of GS activity allows for precise kinetic analysis using Michaelis-Menten modeling to define Kd and Vmax.

View Article and Find Full Text PDF

Diselenides as novel effective fluorescence quenchers to construct a two-photon fluorescent probe for thiols in a mouse stroke model.

Chem Commun (Camb)

January 2025

State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.

A fluorescence quenching mechanism using linear diselenides was proposed for the first time through a combination of intramolecular charge transfer (ICT) and Förster resonance energy transfer (FRET). Herein, we synthesized and screened a two-photon fluorescent probe AFC-SeSe, demonstrating a remarkable 300-fold increase in response to glutathione (GSH). Additionally, AFC-SeSe enabled real-time observation of increased thiol levels following treatment within a short timeframe in a mouse model of stroke.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers focused on detecting mercury (Hg) in water using a nanocomposite of carbon dots and LAPONITE as an optical sensor due to Hg's environmental and health risks.
  • The study used Stern-Volmer analysis at three temperatures to examine the sensor's performance, finding that it selectively detects Hg compared to other metals, with an effective range of 1-40 μM.
  • It revealed that static quenching is the main mechanism for Hg detection, likely due to interactions between the sensor's carboxylate groups and Hg, and some parts of the sensor are not fully accessible to the Hg ions.
View Article and Find Full Text PDF

According to the fluorescence internal filtering effect (IFE), the more the absorption spectrum of the quencher overlaps with the excitation and emission spectra of the fluorescent substance, the better the quenching effect and, correspondingly, the more significant and sensitive the contrast becomes when the fluorescence is turned on. Thus, in the competitive fluorescence-quenching lateral flow immunoassays (FQ-LFIAs), the fluorescence quencher with an outstanding optical property is of great importance. Herein, gold nanoparticles (AuNPs) and polydopamine (PDA) coengineered covalent organic frameworks (COF/Au@PDA) were synthesized as a fluorescence quencher to increase spectral overlap.

View Article and Find Full Text PDF

Light-harvesting complexes (LHCs) play a critical role in modulating energy flux within photosynthetic organisms in response to fluctuating light. Under high light conditions, they activate quenching mechanisms to mitigate photodamage. Despite their importance, the molecular mechanisms underlying these photoprotective processes remain incomplete.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!