Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The structural parameters of Hg2+ hydration were studied in 0.225 mol/L solutions of Hg2+ in DNO3/D2O by means of neutron diffraction with isotopic substitution of 199Hg for natHg. It was found that Hg2+ is hydrated by a first solvation shell of six water molecules. The observed Hg-O and Hg-H distances are equal to 2.48+/-0.05 and 3.08+/-0.05 A, respectively. The angle phi between the plane of the water molecule and the cation-water oxygen axis is approximately 35 degrees . The solvation of Hg2+ therefore mimics very closely that of Ca2+ (the Ca-O and Ca-H distances are 2.40 and 3.03 A, respectively) and helps to account for the extreme toxicity of mercury(II). We note also that the Hg-O distance obtained in the neutron diffraction experiment is larger by approximately 0.1 A than that obtained by X-ray diffraction. This difference is consistent with a shift of the oxygen electron density toward the mercury cation due to the covalency of the Hg-O interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp072650w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!