Species may compete indirectly by altering the traits of a shared resource. For example, herbivore-induced responses in plants may make plants more resistant or susceptible to additional herbivorous insect species. Herbivore-induced plant responses can significantly affect interspecific competition and herbivore population dynamics. These herbivore-herbivore indirect interactions have been overlooked in aquatic ecosystems where previous studies used the same herbivore species to induce changes and to assess the effects of these changes. We asked whether seaweed grazing by one of two herbivorous, congeneric snail species (Littorina obtusata or Littorina littorea) with different feeding strategies and preferences would affect subsequent feeding preferences of three herbivore species (both snails and the isopod Idotea baltica) and population densities of three herbivore species (both snails and a third periwinkle snail, Lacuna vincta). In addition, we measured phlorotannin concentrations to test the hypothesis that these metabolites function as induced defenses in the Phaeophyceae. Snail herbivory induced cue-specific responses in apical tissues of the seaweed Fucus vesiculosus that affected the three herbivore species similarly. When compared to ungrazed controls, direct grazing by Littorina obtusata reduced seaweed palatability by at least 52% for both snail species and the isopod species. In contrast, direct grazing by L. littorea did not decrease seaweed palatability for any herbivore, indicating herbivore-specific responses. Previous grazing by L. obtusata reduced populations of L. littorea on outplanted seaweeds by 46% but had no effect on L. obtusata populations. Phlorotannins, a potential class of inducible chemicals in brown algae, were not more concentrated in grazed seaweed tissues, suggesting that some other trait was responsible for the induced resistance. Our results indicate that marine herbivores may compete via inducible responses in shared seaweeds. These plant-mediated interactions were asymmetric with a specialist (L. obtusata) competitively superior to a generalist (L. littorea).

Download full-text PDF

Source
http://dx.doi.org/10.1890/06-1585DOI Listing

Publication Analysis

Top Keywords

herbivore species
16
three herbivore
12
species
9
induced resistance
8
snail species
8
littorina obtusata
8
species snails
8
direct grazing
8
obtusata reduced
8
seaweed palatability
8

Similar Publications

Plants evolve diverse communication systems in adapting to complex and variable environments. Here, we examined the relationship between plant architecture, population density and inter-plant communication within tree species. We tested the hypothesis that trees of species with complex architecture or high population density (high population density: HPD) communicate among conspecifics via volatiles.

View Article and Find Full Text PDF

A central goal of ecosystem restoration is to promote diverse, native-dominated plant communities. However, restoration outcomes can be highly variable. One cause of this variation may be the decisions made during the seed mix design process, such as choosing the number of species to include (sown diversity) or the number of locations each species should be sourced from (source diversity, manipulated to affect genetic diversity).

View Article and Find Full Text PDF

Metabolomics and microbiome analysis elucidate the detoxification mechanisms of Hemarthria compressa, a low cadmium accumulating plant, in response to cadmium stress.

J Hazard Mater

January 2025

College of Animal Science and Technology, Southwest University, Chongqing 402460, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 402460, China. Electronic address:

Cadmium (Cd) is recognized as one of the most toxic heavy metal in the environment that causes pronounced phytotoxicity. This study investigated the physiological and biochemical responses and detoxification mechanisms of Hemarthria compressa under various concentrations of Cd stress (0, 30, 60, 90, and 270 mg·kg). Our research findings indicate that the growth and photosynthetic capacity of H.

View Article and Find Full Text PDF

Beetles that feed on the nutritionally depauperate and recalcitrant tissues provided by the leaves, stems, and roots of living plants comprise one-quarter of herbivorous insect species. Among the key adaptations for herbivory are plant cell wall-degrading enzymes (PCWDEs) that break down the fastidious polymers in the cell wall and grant access to the nutritious cell content. While largely absent from the non-herbivorous ancestors of beetles, such PCWDEs were occasionally acquired via horizontal gene transfer (HGT) or by the uptake of digestive symbionts.

View Article and Find Full Text PDF

Hemiparasitic plants facilitate ecological restoration of encroached European grasslands.

J Environ Manage

January 2025

Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37, Brno, Czech Republic.

Species-rich grasslands of temperate Europe are threatened by the spread and increasing dominance of the rhizomatous grass Calamagrostis epigejos. Native hemiparasitic Rhinanthus species have been proposed as biocontrol to suppress C. epigejos, but experimental evidence is limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!