Bacterial RNA polymerase holoenzyme relies on its sigma subunit for promoter recognition and opening. In the holoenzyme, regions 2 and 4 of the sigma subunit are positioned at an optimal distance to allow specific recognition of the -10 and -35 promoter elements, respectively. In free sigma, the promoter binding regions are positioned closer to each other and are masked for interactions with the promoter, with sigma region 1 playing a role in the masking. To analyze the DNA-binding properties of the free sigma, we selected single-stranded DNA aptamers that are specific to primary sigma subunits from several bacterial species, including Escherichia coli and Thermus aquaticus. The aptamers share a consensus motif, TGTAGAAT, that is similar to the extended -10 promoter. We demonstrate that recognition of this motif by sigma region 2 occurs without major structural rearrangements of sigma observed upon the holoenzyme formation and is not inhibited by sigma regions 1 and 4. Thus, the complex process of the -10 element recognition by RNA polymerase holoenzyme can be reduced to a simple system consisting of an isolated sigma subunit and a short aptamer oligonucleotide.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M702495200DOI Listing

Publication Analysis

Top Keywords

sigma subunit
16
rna polymerase
12
sigma
11
specific recognition
8
recognition -10
8
-10 promoter
8
polymerase holoenzyme
8
free sigma
8
sigma region
8
promoter
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!