The salts [NEt4][Ru(CN)(CO)2L(o-O2C6Cl4)] {L=PPh3 or P(OPh)3}, which undergo one-electron oxidation at the catecholate ligand to give neutral semiquinone complexes [Ru(CN)(CO)2L(o-O2C6Cl4)], react with the dimers [{Ru(CO)2L(micro-o-O2C6Cl4)}2] {L=PPh3 or P(OPh)3} to give [NEt4][(o-O2C6Cl4)L(OC)2Ru(micro-CN)Ru(CO)2L'(o-O2C6Cl4)] {L or L'=PPh3 or P(OPh)3}. The cyanide-bridged binuclear anions are, in turn, reversibly oxidised to isolable neutral and cationic complexes [(o-O2C6Cl4)L(OC)2Ru(micro-CN)Ru(CO)2L'(o-O2C6Cl4)] and [(o-O2C6Cl4)L(OC)2Ru(micro-CN)Ru(CO)2L'(o-O2C6Cl4)]+ which contain one and two semiquinone ligands respectively. Structural studies on the redox pair [(o-O2C6Cl4)(Ph3P)(OC)2Ru(micro-CN)Ru(CO)2(PPh3)(o-O2C6Cl4)]- and [(o-O2C6Cl4)(Ph3P)(OC)2Ru(micro-CN)Ru(CO)2(PPh3)(o-O2C6Cl4)] confirm that the C-bound Ru(CO)2(o-O2C6Cl4) fragment is oxidised first. Uniquely, [(o-O2C6Cl4){(PhO)3P}(OC)2Ru(micro-CN)Ru(CO)2(PPh3)(o-O2C6Cl4)]- is oxidised first at the N-bound fragment, indicating that it is possible to control the site of electron transfer by tuning the co-ligands. Crystallisation of [(o-O2C6Cl4)(Ph3P)(OC)2Ru(micro-CN)Ru(CO)2{P(OPh)3}(o-O2C6Cl4)] resulted in the formation of an isomer in which the P(OPh)3 ligand is cis to the cyanide bridge, contrasting with the trans arrangement of the X-Ru-L fragment in all other complexes of the type RuX(CO)2L(o-O2C6Cl4).

Download full-text PDF

Source
http://dx.doi.org/10.1039/b700648aDOI Listing

Publication Analysis

Top Keywords

{l=pph3 poph3}
8
homobinuclear cyanide-bridged
4
cyanide-bridged linkage
4
linkage isomers
4
isomers redox-active
4
redox-active unit
4
unit [micro-xyruco2lo-o2c6cl4]
4
[micro-xyruco2lo-o2c6cl4] xy=cn
4
xy=cn salts
4
salts [net4][rucnco2lo-o2c6cl4]
4

Similar Publications

The synthesis of enantiomerically pure pyridine-bridged phosphaalkene-oxazolines ArP═C(Ph)(2,6-C5H3NOx) (1, Ar = Mes/Mes*, Ox = CNOCH(i-Pr)CH2/CNOCH(CH2Ph)CH2) is reported. This new ligand forms a κ(P), κ(2)(NN) dimeric complex with copper(I) (7) that dissociates into a cationic κ(3)(PNN) monomeric complex upon addition of a neutral ligand {[1a·CuL]OTf (8a-e): L = PPh3 (a), P(OPh)3 (b), 2,6-lutidine (c), 4-DMAP (d), 1-methylimidazole (e)}. The P-Cu bond lengths in 8 are influenced by the π-accepting/σ-donating properties of L, and this can be observed by changes in the δ(31)PP═C NMR shift.

View Article and Find Full Text PDF

A series of cationic gold(I) heteroleptic complexes bearing the pyrazole-derived N-heterocyclic carbene (NHC) FPyr (1,2,3,4,6,7,8,9-octahydropyridazino[1,2-a]indazolin-11-ylidene), and either a 1,3-disubstituted benzimidazole-derived NHC of the type RR'-bimy (3: R = R' = CHPh2; 4: R = CHPh2, R' = (i)Pr; 5: R = R' = CH2Ph; 6: R = R' = (i)Bu; 7: R = R' = n-Pr; 8: R = R' = Et; 9: R = R' = 2-propenyl) or a non-NHC co-ligand L (10: L = PPh3; 11: L = P(OPh)3; 12: L = DMAP) (DMAP = 4-dimethylaminopyridine) have been synthesized from [AuCl(FPyr)] (1). Complexes 3-12 have been characterized using multinuclei NMR spectroscopies, ESI mass spectrometry, and elemental analysis. X-ray diffraction analyses have been performed on complexes 5, 6, and 9-11.

View Article and Find Full Text PDF

Asymmetric transfer hydrogenation of ketones catalyzed by enantiopure osmium(II) pybox complexes.

Inorg Chem

May 2013

Departamento de Química Orgánica e Inorgánica, Instituto de Química Organometálica Enrique Moles (Unidad Asociada al CSIC), Universidad de Oviedo, 33006 Oviedo, Spain.

The complexes trans-[OsCl2(L){(S,S)-(i)Pr-pybox}] ((S,S)-(i)Pr-pybox = 2,6-bis[4'-(S)-isopropyloxazolin-2'-yl]pyridine, L = P(OMe)3 (1a), P(OEt)3 (2a), P(O(i)Pr)3 (3a), P(OPh)3 (4a), and cis-[OsCl2(L){(S,S)-(i)Pr-pybox}] (L = PPh3 (5a), P(i)Pr3 (6a), and PCy3 (7a)) have been synthesized from the complex trans-[OsCl2(η(2)-C2H4){(S,S)-(i)Pr-pybox}] via substitution of ethylene by phosphites and phosphines, respectively, under toluene reflux conditions. On the other hand, the synthesis of the complexes trans-[OsCl2(L){(R,R)-Ph-pybox}] (L = P(OMe)3 (1b) and cis-[OsCl2(L){(R,R)-Ph-pybox}] (L = PPh3 (5b), P(i)Pr3 (6b), and PCy3 (7b)) has been achieved from the complex trans-[OsCl2(η(2)-C2H4){(R,R)-Ph-pybox}] ((R,R)-Ph-pybox = 2,6-bis[4'-(R)-phenyloxazolin-2'-yl]pyridine under microwave irradiation. Complexes 1a-6a, 1b, 5b, and 6b have been assayed as catalysts for the asymmetric transfer hydrogenation (ATH) of ketones.

View Article and Find Full Text PDF

Two series of stable cyanide-bridged linkage isomers, namely [(o-O2C6Cl4)(Ph3P)(OC)2Ru(mu-XY)MnL(NO)(eta-C5Me5)] (XY = CN or NC, L = CNBu(t) or CNXyl) and [(o-O2C6Cl4)L(OC)2Ru(mu-XY)M(CO)(PhC-CPh)Tp'] {M = Mo or W, L = PPh3 or P(OPh)3, Tp' = hydrotris(3,5-dimethylpyrazolyl)borate} have been synthesised; pairs of isomers are distinguishable by IR spectroscopy and cyclic voltammetry. The molecular structure of [(o-O2C6Cl4)(Ph3P)(OC)2Ru(mu-NC)Mo(CO)(PhC-CPh)Tp'] has the catecholate-bound ruthenium atom cyanide-bridged to a Mo(CO)(PhC[triple band]CPh)Tp' unit in which the alkyne acts as a four-electron donor; the alignment of the alkyne relative to the Mo-CO vector suggests the fragment (CN)Ru(CO)2(PPh3)(o-O2C6Cl4) acts as a pi-acceptor ligand. The complexes [(o-O2C6Cl4)(Ph3P)(OC)2Ru(mu-XY)Mn(NO)L(eta-C5Me5)] undergo three sequential one-electron oxidation processes with the first and third assigned to oxidation of the ruthenium-bound o-O2C6Cl4 ligand; the second corresponds to oxidation of Mn(I) to Mn(n).

View Article and Find Full Text PDF

The salts [NEt4][Ru(CN)(CO)2L(o-O2C6Cl4)] {L=PPh3 or P(OPh)3}, which undergo one-electron oxidation at the catecholate ligand to give neutral semiquinone complexes [Ru(CN)(CO)2L(o-O2C6Cl4)], react with the dimers [{Ru(CO)2L(micro-o-O2C6Cl4)}2] {L=PPh3 or P(OPh)3} to give [NEt4][(o-O2C6Cl4)L(OC)2Ru(micro-CN)Ru(CO)2L'(o-O2C6Cl4)] {L or L'=PPh3 or P(OPh)3}. The cyanide-bridged binuclear anions are, in turn, reversibly oxidised to isolable neutral and cationic complexes [(o-O2C6Cl4)L(OC)2Ru(micro-CN)Ru(CO)2L'(o-O2C6Cl4)] and [(o-O2C6Cl4)L(OC)2Ru(micro-CN)Ru(CO)2L'(o-O2C6Cl4)]+ which contain one and two semiquinone ligands respectively. Structural studies on the redox pair [(o-O2C6Cl4)(Ph3P)(OC)2Ru(micro-CN)Ru(CO)2(PPh3)(o-O2C6Cl4)]- and [(o-O2C6Cl4)(Ph3P)(OC)2Ru(micro-CN)Ru(CO)2(PPh3)(o-O2C6Cl4)] confirm that the C-bound Ru(CO)2(o-O2C6Cl4) fragment is oxidised first.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!