The salts [NEt4][Ru(CN)(CO)2L(o-O2C6Cl4)] {L=PPh3 or P(OPh)3}, which undergo one-electron oxidation at the catecholate ligand to give neutral semiquinone complexes [Ru(CN)(CO)2L(o-O2C6Cl4)], react with the dimers [{Ru(CO)2L(micro-o-O2C6Cl4)}2] {L=PPh3 or P(OPh)3} to give [NEt4][(o-O2C6Cl4)L(OC)2Ru(micro-CN)Ru(CO)2L'(o-O2C6Cl4)] {L or L'=PPh3 or P(OPh)3}. The cyanide-bridged binuclear anions are, in turn, reversibly oxidised to isolable neutral and cationic complexes [(o-O2C6Cl4)L(OC)2Ru(micro-CN)Ru(CO)2L'(o-O2C6Cl4)] and [(o-O2C6Cl4)L(OC)2Ru(micro-CN)Ru(CO)2L'(o-O2C6Cl4)]+ which contain one and two semiquinone ligands respectively. Structural studies on the redox pair [(o-O2C6Cl4)(Ph3P)(OC)2Ru(micro-CN)Ru(CO)2(PPh3)(o-O2C6Cl4)]- and [(o-O2C6Cl4)(Ph3P)(OC)2Ru(micro-CN)Ru(CO)2(PPh3)(o-O2C6Cl4)] confirm that the C-bound Ru(CO)2(o-O2C6Cl4) fragment is oxidised first. Uniquely, [(o-O2C6Cl4){(PhO)3P}(OC)2Ru(micro-CN)Ru(CO)2(PPh3)(o-O2C6Cl4)]- is oxidised first at the N-bound fragment, indicating that it is possible to control the site of electron transfer by tuning the co-ligands. Crystallisation of [(o-O2C6Cl4)(Ph3P)(OC)2Ru(micro-CN)Ru(CO)2{P(OPh)3}(o-O2C6Cl4)] resulted in the formation of an isomer in which the P(OPh)3 ligand is cis to the cyanide bridge, contrasting with the trans arrangement of the X-Ru-L fragment in all other complexes of the type RuX(CO)2L(o-O2C6Cl4).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b700648a | DOI Listing |
Inorg Chem
July 2016
Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada.
The synthesis of enantiomerically pure pyridine-bridged phosphaalkene-oxazolines ArP═C(Ph)(2,6-C5H3NOx) (1, Ar = Mes/Mes*, Ox = CNOCH(i-Pr)CH2/CNOCH(CH2Ph)CH2) is reported. This new ligand forms a κ(P), κ(2)(NN) dimeric complex with copper(I) (7) that dissociates into a cationic κ(3)(PNN) monomeric complex upon addition of a neutral ligand {[1a·CuL]OTf (8a-e): L = PPh3 (a), P(OPh)3 (b), 2,6-lutidine (c), 4-DMAP (d), 1-methylimidazole (e)}. The P-Cu bond lengths in 8 are influenced by the π-accepting/σ-donating properties of L, and this can be observed by changes in the δ(31)PP═C NMR shift.
View Article and Find Full Text PDFDalton Trans
September 2013
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore.
A series of cationic gold(I) heteroleptic complexes bearing the pyrazole-derived N-heterocyclic carbene (NHC) FPyr (1,2,3,4,6,7,8,9-octahydropyridazino[1,2-a]indazolin-11-ylidene), and either a 1,3-disubstituted benzimidazole-derived NHC of the type RR'-bimy (3: R = R' = CHPh2; 4: R = CHPh2, R' = (i)Pr; 5: R = R' = CH2Ph; 6: R = R' = (i)Bu; 7: R = R' = n-Pr; 8: R = R' = Et; 9: R = R' = 2-propenyl) or a non-NHC co-ligand L (10: L = PPh3; 11: L = P(OPh)3; 12: L = DMAP) (DMAP = 4-dimethylaminopyridine) have been synthesized from [AuCl(FPyr)] (1). Complexes 3-12 have been characterized using multinuclei NMR spectroscopies, ESI mass spectrometry, and elemental analysis. X-ray diffraction analyses have been performed on complexes 5, 6, and 9-11.
View Article and Find Full Text PDFInorg Chem
May 2013
Departamento de Química Orgánica e Inorgánica, Instituto de Química Organometálica Enrique Moles (Unidad Asociada al CSIC), Universidad de Oviedo, 33006 Oviedo, Spain.
The complexes trans-[OsCl2(L){(S,S)-(i)Pr-pybox}] ((S,S)-(i)Pr-pybox = 2,6-bis[4'-(S)-isopropyloxazolin-2'-yl]pyridine, L = P(OMe)3 (1a), P(OEt)3 (2a), P(O(i)Pr)3 (3a), P(OPh)3 (4a), and cis-[OsCl2(L){(S,S)-(i)Pr-pybox}] (L = PPh3 (5a), P(i)Pr3 (6a), and PCy3 (7a)) have been synthesized from the complex trans-[OsCl2(η(2)-C2H4){(S,S)-(i)Pr-pybox}] via substitution of ethylene by phosphites and phosphines, respectively, under toluene reflux conditions. On the other hand, the synthesis of the complexes trans-[OsCl2(L){(R,R)-Ph-pybox}] (L = P(OMe)3 (1b) and cis-[OsCl2(L){(R,R)-Ph-pybox}] (L = PPh3 (5b), P(i)Pr3 (6b), and PCy3 (7b)) has been achieved from the complex trans-[OsCl2(η(2)-C2H4){(R,R)-Ph-pybox}] ((R,R)-Ph-pybox = 2,6-bis[4'-(R)-phenyloxazolin-2'-yl]pyridine under microwave irradiation. Complexes 1a-6a, 1b, 5b, and 6b have been assayed as catalysts for the asymmetric transfer hydrogenation (ATH) of ketones.
View Article and Find Full Text PDFDalton Trans
May 2007
School of Chemistry, University of Bristol, Bristol, UK BS8 1TS.
Two series of stable cyanide-bridged linkage isomers, namely [(o-O2C6Cl4)(Ph3P)(OC)2Ru(mu-XY)MnL(NO)(eta-C5Me5)] (XY = CN or NC, L = CNBu(t) or CNXyl) and [(o-O2C6Cl4)L(OC)2Ru(mu-XY)M(CO)(PhC-CPh)Tp'] {M = Mo or W, L = PPh3 or P(OPh)3, Tp' = hydrotris(3,5-dimethylpyrazolyl)borate} have been synthesised; pairs of isomers are distinguishable by IR spectroscopy and cyclic voltammetry. The molecular structure of [(o-O2C6Cl4)(Ph3P)(OC)2Ru(mu-NC)Mo(CO)(PhC-CPh)Tp'] has the catecholate-bound ruthenium atom cyanide-bridged to a Mo(CO)(PhC[triple band]CPh)Tp' unit in which the alkyne acts as a four-electron donor; the alignment of the alkyne relative to the Mo-CO vector suggests the fragment (CN)Ru(CO)2(PPh3)(o-O2C6Cl4) acts as a pi-acceptor ligand. The complexes [(o-O2C6Cl4)(Ph3P)(OC)2Ru(mu-XY)Mn(NO)L(eta-C5Me5)] undergo three sequential one-electron oxidation processes with the first and third assigned to oxidation of the ruthenium-bound o-O2C6Cl4 ligand; the second corresponds to oxidation of Mn(I) to Mn(n).
View Article and Find Full Text PDFDalton Trans
June 2007
School of Chemistry, University of Bristol, Bristol, UKBS8 1TS.
The salts [NEt4][Ru(CN)(CO)2L(o-O2C6Cl4)] {L=PPh3 or P(OPh)3}, which undergo one-electron oxidation at the catecholate ligand to give neutral semiquinone complexes [Ru(CN)(CO)2L(o-O2C6Cl4)], react with the dimers [{Ru(CO)2L(micro-o-O2C6Cl4)}2] {L=PPh3 or P(OPh)3} to give [NEt4][(o-O2C6Cl4)L(OC)2Ru(micro-CN)Ru(CO)2L'(o-O2C6Cl4)] {L or L'=PPh3 or P(OPh)3}. The cyanide-bridged binuclear anions are, in turn, reversibly oxidised to isolable neutral and cationic complexes [(o-O2C6Cl4)L(OC)2Ru(micro-CN)Ru(CO)2L'(o-O2C6Cl4)] and [(o-O2C6Cl4)L(OC)2Ru(micro-CN)Ru(CO)2L'(o-O2C6Cl4)]+ which contain one and two semiquinone ligands respectively. Structural studies on the redox pair [(o-O2C6Cl4)(Ph3P)(OC)2Ru(micro-CN)Ru(CO)2(PPh3)(o-O2C6Cl4)]- and [(o-O2C6Cl4)(Ph3P)(OC)2Ru(micro-CN)Ru(CO)2(PPh3)(o-O2C6Cl4)] confirm that the C-bound Ru(CO)2(o-O2C6Cl4) fragment is oxidised first.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!