Population-based association studies have identified several polymorphic variants in genes encoding ion channel subunits associated with the electrocardiographic heart-rate-corrected QT (QTc) length in healthy populations of Caucasian origin (KCNH2 rs1,805,123 (K897 T) and rs3,815,459, SCN5A rs1,805,126 (D1,819D), 1,141-3 C>A, rs1,805,124 (H558R), and IVS24+116 G>A, KCNQ1 rs757,092, KCNE1 IVS2-128 G>A and rs1,805,127 (G38S), and KCNE2 rs2,234,916 (T8A)). However, few of these results have been replicated in independent populations. We tested the association of SNPs KCNQ1 rs757,092, KCNH2 rs3,815,459, SCN5A IVS24+116 G>A, KCNE1 IVS2-128 G>A and KCNE2 rs2,234,916 with QTc length in two groups of 200 subjects presenting the shortest and the longest QTc from a cohort of 2,008 healthy subjects. All polymorphisms were in Hardy-Weinberg equilibrium in both groups. The minor allele SCN5A IVS24+116 A was more frequent in the group of subjects with the shortest QTc, whereas the minor alleles KCNQ1 rs757,092 G and KCNH2 rs3,815,459 A were more frequent in the group with the longest QTc. There was no significant difference for KCNE1 IVS2-128 G>A and KCNE2 rs2,234,916 between the two groups. Haplotype analysis showed a twofold increased risk of QTc lengthening for carriers of the haplotype, combining alleles C and A of the two common KCNE1 SNPs, IVS2-129 C>T (rs2,236,609) and rs1,805,127 (G38S), respectively. In conclusion, our study confirms the reported associations between QTc length and KCNQ1 rs757,092 and KCNH2 rs3,815,459.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2234597 | PMC |
http://dx.doi.org/10.1038/sj.ejhg.5201866 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!