Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The purpose of this study is to identify the functional brain networks activated in relation to actual tool-use in humans. Although previous studies have identified brain activity related to tool-use gestures (Moll et al., 2000), they did not investigate the brain activity involved in such tool-use. We investigated brain activity using functional magnetic resonance imaging (fMRI) while human subjects mentally imagined using sixteen common tools and while they actually used them. Brain activity for both actual and imagined tool-use was found in the posterior part of the parietal cortex, in the supplementary motor area, and in the cerebellum. Under imagined tool-use conditions, we found brain activity in the premotor and right pars opercularis. Under actual tool-use conditions, we found it in the primary motor area, in the thalamus, and in the left pars opercularis. Our precise analysis in the cerebellum indicated that activity evoked by imagery was located significantly more lateral to that evoked by actual use. We found a relationship between activity in the tool imagery and execution conditions by comparing their t-value-weighted centroid of activation coordinates. Moreover, for half of the subjects the spatial distribution pattern for each tool was similar, suggesting that neural mechanisms contributing to skillful tool-use are modularly organized in the cerebellum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0010-9452(08)70460-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!