Three ruthenium(II) polypyridine complexes of general formula [Ru(bpy)(3-n)(TTF-dppz)n](PF6)2 (n=1-3, bpy=2,2'-bipyridine), with one, two or three redox-active TTF-dppz (4',5'-bis(propylthio)tetrathiafulvenyl[i]dipyrido[3,2-a:2',3'-c]phenazine) ligands, were synthesised and fully characterised. Their electrochemical and photophysical properties are reported together with those of the reference compounds [Ru(bpy)3](PF6)2, [Ru(dppz)3](PF6)2 and [Ru(bpy)2(dppz)](PF6)2 and the free TTF-dppz ligand. All three complexes show intraligand charge-transfer (ILCT) fluorescence of the TTF-dppz ligand. Remarkably, the complex with n=1 exhibits luminescence from the Ru(2+)-->dppz metal-to-ligand charge-transfer ((3)MLCT) state, whereas for the other two complexes, a radiationless pathway via electron transfer from a second TTF-dppz ligand quenches the (3)MLCT luminescence. The TTF fragments as electron donors thus induce a ligand-to-ligand charge-separated (LLCS) state of the form TTF-dppz- -Ru(2+)-dppz-TTF(+). The lifetime of this LLCS state is approximately 2.3 micros, which is four orders of magnitude longer than that of 0.4 ns for the ILCT state, because recombination of charges on two different ligands is substantially slower.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.200700066 | DOI Listing |
Chemistry
March 2021
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.
Ultrafast optical control of intramolecular charge flow was demonstrated, which paves the way for photocurrent modulation and switching with a highly wavelength-selective ON/OFF ratio. The system that was explored is a fac-[Re(CO) (TTF-DPPZ)Cl] complex, where TTF-DPPZ=4',5'-bis(propylthio)tetrathiafulvenyl[i]dipyrido[3,2-a:2',3'-c]phenazine. DFT calculations and AC-Stark spectroscopy confirmed the presence of two distinct optically active charge-transfer processes, namely a metal-to-ligand charge transfer (MLCT) and an intra-ligand charge transfer (ILCT).
View Article and Find Full Text PDFInorg Chem
January 2013
Département de Chimie Physique, Université de Genève, 30 Quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland.
The synthesis and photophysical properties of the complex [Fe(phen)(2)(TTF-dppz)](2+) (TTF-dppz = 4',5'-bis-(propylthio)tetrathiafulvenyl[i]dipyrido[3,2-a:2',3'-c]phenazine, phen = 1,10-phenanthroline) are described. In this complex, excitation into the metal-ligand charge transfer bands results in the population of a high-spin state of iron(II), with a decay lifetime of approximately 1.5 ns, in dichloromethane, at room temperature.
View Article and Find Full Text PDFInorg Chem
April 2011
Département de Chimie Physique, Université de Genève, 30 Quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland.
The synthesis and the photophysical properties of the complex [Ru(TTF-dppz)(2)(Aqphen)](2+) (TTF = tetrathiafulvalene, dppz = dipyrido-[3,2-a:2',3'-c]phenazine, Aqphen = anthraquinone fused to phenanthroline via a pyrazine bridge) are described. In this molecular triad excitation into the metal-ligand charge transfer bands results in the creation of a long-lived charge separated state with TTF acting as electron donor and anthraquinone as terminal acceptor. The lifetime of the charge-separated state is 400 ns in dichloromethane at room temperature.
View Article and Find Full Text PDFChemphyschem
July 2007
Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012 Bern, Switzerland.
Three ruthenium(II) polypyridine complexes of general formula [Ru(bpy)(3-n)(TTF-dppz)n](PF6)2 (n=1-3, bpy=2,2'-bipyridine), with one, two or three redox-active TTF-dppz (4',5'-bis(propylthio)tetrathiafulvenyl[i]dipyrido[3,2-a:2',3'-c]phenazine) ligands, were synthesised and fully characterised. Their electrochemical and photophysical properties are reported together with those of the reference compounds [Ru(bpy)3](PF6)2, [Ru(dppz)3](PF6)2 and [Ru(bpy)2(dppz)](PF6)2 and the free TTF-dppz ligand. All three complexes show intraligand charge-transfer (ILCT) fluorescence of the TTF-dppz ligand.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!