Short hairpin RNA causes the methylation of transforming growth factor-beta receptor II promoter and silencing of the target gene in rat hepatic stellate cells.

Biochem Biophys Res Commun

Department of Internal Medicine, Transplant Research Program, University of California, Davis Medical Center, Sacramento, CA 95817, USA.

Published: July 2007

Small interfering RNA (siRNA) induces transcriptional gene silencing (TGS) in plant and animal cells. RNA dependent DNA methylation (RdDM) accounts for TGS in plants, but it is unclear whether siRNA induces RdDM in mammalian cells. To determine whether stable expression of short hairpin siRNA (shRNA) induces DNA methylation in mammalian cells, we transduced rat hepatic stellate SBC10 cells with lentiviral vectors which encode an U6 promoter-driven shRNA expression cassette homologous to the transforming growth factor-beta receptor (TGFbetaRII) promoter region. Sequencing analysis of bisulfite-modified genomic DNA showed the methylation of cytosine residues both in CpG dinucleotides and non-CpG sites around the target region of the TGFbetaRII promoter in SBC10 cells transduced with the promoter-targeting lentiviral vector. In these cells, real-time RT-PCR showed a decrease in TGFbetaRII mRNA levels which were reversed by treatment with 5-aza-2-deoxycytidine. Our results demonstrate that recombinant lentivirus-mediated shRNA delivery resulted in the methylation of the homologous promoter area in mammalian cells, and this approach may be used as a tool for transcriptional gene silencing by epigenetic modification of mammalian cell promoters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2474738PMC
http://dx.doi.org/10.1016/j.bbrc.2007.05.080DOI Listing

Publication Analysis

Top Keywords

dna methylation
12
mammalian cells
12
short hairpin
8
transforming growth
8
growth factor-beta
8
factor-beta receptor
8
rat hepatic
8
hepatic stellate
8
cells
8
sirna induces
8

Similar Publications

The early symptoms of hepatocellular carcinoma patients are often subtle and easily overlooked. By the time patients exhibit noticeable symptoms, the disease has typically progressed to middle or late stages, missing optimal treatment opportunities. Therefore, discovering biomarkers is essential for elucidating their functions for the early diagnosis and prevention.

View Article and Find Full Text PDF

Background: Evidence indicates a negative link between glucosamine and age-related cognitive decline and sarcopenia. However, the causal relationship remains uncertain. This study aims to verify whether glucosamine is causally associated with cognitive function and sarcopenia.

View Article and Find Full Text PDF

DNA methylation age (DNAmAge) surpasses chronological age in its ability to predict age-related morbidities and mortality. This study analyzed data from 287 middle-aged twins in the Louisville Twin Study (mean age 51.9 years ± 7.

View Article and Find Full Text PDF

Structural variants (SVs) drive gene expression in the human brain and are causative of many neurological conditions. However, most existing genetic studies have been based on short-read sequencing methods, which capture fewer than half of the SVs present in any one individual. Long-read sequencing (LRS) enhances our ability to detect disease-associated and functionally relevant structural variants (SVs); however, its application in large-scale genomic studies has been limited by challenges in sample preparation and high costs.

View Article and Find Full Text PDF

Di(2-ethylhexyl) phthalate (DEHP), a known endocrine-disrupting chemical, is a plasticizer found in many common consumer products. High levels of DEHP exposure have been linked to adverse pregnancy outcomes, yet little is known about how it affects human uterine functions. We previously reported that the estrogen-regulated transcription factor hypoxia-inducible factor 2 alpha (HIF2α) promotes the expression of Rab27b, which controls the trafficking and secretion of extracellular vesicles (EVs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!