It is likely that effective application of cell-laden implants for cartilage defects depends on retention of implanted cells and interaction between implanted and host cells. The objectives of this study were to characterize stratified cartilaginous constructs seeded sequentially with superficial (S) and middle (M) chondrocyte subpopulations labeled with fluorescent cell tracking dye PKH26 (*) and determine the degree to which these stratified cartilaginous constructs maintain their architecture in vivo after implantation in mini-pigs for 1 week. Alginate-recovered cells were seeded sequentially to form stratified S*/M (only S cells labeled) and S*/M* (both S and M cells labeled) constructs. Full-thickness defects (4 mm diameter) were created in the patellofemoral groove of adult Yucatan mini-pigs and filled with portions of constructs or left empty. Constructs were characterized biochemically, histologically, and biomechanically, and stratification visualized and quantified, before and after implant. After 1 week, animals were sacrificed and implants retrieved. After 1 week in vivo, glycosaminoglycan and collagen content of constructs remained similar to that at implant, whereas DNA content increased. Histological analyses revealed features of an early repair response, with defects filled with tissues containing little matrix and abundant cells. Some implanted (PKH26-labeled) cells persisted in the defects, although constructs did not maintain a stratified organization. Of the labeled cells, 126 +/- 38% and 32 +/- 8% in S*/M and S*/M* constructs, respectively, were recovered. Distribution of labeled cells indicated interactions between implanted and host cells. Longer-term in vivo studies will be useful in determining whether implanted cells are sufficient to have a positive effect in repair.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.2007.0044DOI Listing

Publication Analysis

Top Keywords

cartilaginous constructs
12
cells
11
constructs
9
chondrocyte subpopulations
8
implanted cells
8
implanted host
8
host cells
8
stratified cartilaginous
8
seeded sequentially
8
constructs maintain
8

Similar Publications

Modeling and analysis of explicit dynamics of foot landing.

Med Biol Eng Comput

January 2025

School of Medical Engineering, Department of Cardiology of The First Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, 453003, Henan, China.

The research aims to investigate the mechanical response of footfalls at different velocities to understand the mechanism of heel injury and provide a scientific basis for the prevention and treatment of heel fractures. A three-dimensional solid model of foot drop was constructed using anatomical structures segmented from medical CT scans, including bone, cartilage, ligaments, plantar fascia, and soft tissues, and the impact velocities of the foot were set to be 2 m/s, 4 m/s, 6 m/s, 8 m/s, and 10 m/s. Explicit kinetic analysis methods were used to investigate the mechanical response of the foot landing with different speeds to explore the damage mechanism of heel bone at different impact velocities.

View Article and Find Full Text PDF

This study aimed to test age-related changes in sternal fusion and sternal-rib cartilage ossification on multi-slice computed tomography (MSCT) images of the Croatian population. The additional aim was to develop models to estimate age and provide an interface for the model's application and validation. This retrospective study was conducted on 144 MSCT images of the sternal region, and the developed models were tested on 36 MSCT images.

View Article and Find Full Text PDF

Microtia profoundly affects patients' appearance and psychological well-being. Tissue engineering ear cartilage scaffolds have emerged as the most promising solution for ear reconstruction. However, constructing tissue engineering ear cartilage scaffolds requires multiple passaging of chondrocytes, resulting in their dedifferentiation and loss of their special phenotypes and functions.

View Article and Find Full Text PDF

Biodegradable PHBVHHx-PEG/Collagen Hydrogel Scaffolds for Cartilage Repair.

Tissue Eng Part A

January 2025

Department of Orthopedic Surgery and Orthopedic Research Institute, Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, China.

Recently, there has been increased attention on the treatment of cartilage repair. Overall, we constructed PHBVHHx-COL, a composite hydrogel of PHBVHHx-co-PEG and collagen, and evaluated its cartilage repair efficacy through and studies using hydrogel loaded with peripheral blood-derived mesenchymal stem cells (PBMSCs). Rheological properties and compressive mechanical properties of the hydrogels were systematically evaluated.

View Article and Find Full Text PDF

Slide-Ring Structured Stress-Electric Coupling Hydrogel Microspheres for Low-Loss Transduction Between Tissues.

Adv Mater

January 2025

Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China.

High transductive loss at tissue injury sites impedes repair. The high dissipation characteristics in the electromechanical conversion of piezoelectric biomaterials pose a challenge. Therefore, supramolecular engineering and microfluidic technology is utilized to introduce slide-ring polyrotaxane and conductive polypyrrole to construct stress-electric coupling hydrogel microspheres.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!