Macroevolutionary relations among main lineages of Foraminifera have traditionally been inferred from the small subunit ribosomal genes (SSU rDNA). However, important discrepancies in the rates of SSU rDNA evolution between major lineages led to difficulties in accurate interpretation of SSU-based phylogenetic reconstructions. Recently, actin and beta-tubulin sequences have been used as alternative markers of foraminiferal phylogeny and their analyses globally confirm results obtained with SSU rDNA. In order to test new protein markers, we sequenced a fragment of the largest subunit of the RNA polymerase II (RPB1), a nuclear encoded single copy gene, for 8 foraminiferal species representing major orders of Foraminifera. Analyses of our data robustly confirm previous SSU rDNA and actin phylogenies and show (i) the paraphyly and ancestral position of monothalamid Foraminifera; (ii) the independent origin of miliolids; (iii) the monophyly of rotaliids, including buliminids and globigerinids; and (iv) the polyphyly of planktonic families Globigerinidae and Candeinidae. Additionally, the RPB1 phylogeny suggests Allogromiidae as the most ancestral foraminiferal lineage. In the light of our study, RPB1 appears as a valuable phylogenetic marker, particularly useful for groups of protists showing extreme variations of evolutionary rates in ribosomal genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejop.2007.01.003 | DOI Listing |
Microorganisms
November 2024
National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea.
, a halophilic unicellular chlorophyte, produces bioactive compounds and biofuels applicable to various industries. Despite its industrial significance, comprehensive studies on the morphological, physiological, and biochemical characteristics of the genus remain challenging. In this study, we characterized an axenically isolated green alga from a salt pond in Taean, Republic of Korea, and assessed its industrially relevant traits.
View Article and Find Full Text PDFSci Rep
January 2025
Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Ave. 33, Moscow, Russian Federation, 119071.
Gregarines from the families Dactylophoridae and Trichorhynchidae parasitize exclusively centipedes and have a distinct morphology among other terrestrial eugregarines, but their evolutionary relationships have not yet been studied with molecular methods. Here we obtain rDNA operon sequences for the dactylophorids and trichorhynchids. We describe a new species Trichorhynchus efeykini sp.
View Article and Find Full Text PDFPlant Dis
December 2024
Dalian Minzu University, College of Environment and Resources, Liaohe West Road No.8, Dalian Economic and Technological Developing Zone, Dalian, China, 116600;
Styphnolobium japonicum (L.) Schott, is an ornamental species of Leguminosae, widely planted as a roadside tree in north regions of China (Kite et al. 2007).
View Article and Find Full Text PDFMycoKeys
December 2024
Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
This study introduces a novel genus , with its type . The specimen was collected on dead aerial branches of in Italy. Based on the examination of morphology and the results of phylogenetic analyses involving nuclear 18S rDNA (SSU), nuclear 28S rDNA (LSU), nuclear rDNA ITS1-5.
View Article and Find Full Text PDFStud Mycol
December 2024
School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China.
More than 2 000 yeast strains isolated from 1 200 samples mostly collected from Tibet and Yunnan provinces in China were identified as 462 species according to the internal transcribed spacer including the 5.8S rDNA (ITS) and the D1/D2 domains of the large subunit rDNA (LSU) sequence analyses. Among them, 70 new basidiomycetous yeast species were proposed based on the multi-locus phylogenetic analyses including the D1/D2 domains, the ITS, the small subunit rDNA (SSU), the largest subunit of RNA polymerase II (), the second largest subunit of RNA polymerase II () and translation elongation factor 1-α (), as well as the phenotypic comparisons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!