Efficiencies of the series water-soluble anionic and cationic sensitizers have been studied in photodynamic natural water disinfection. It was found that only cationic sensitizers are efficient in photooxidative bacteria killing during photodynamic water treatment. The difference in photodynamic action towards different groups of microorganisms has been observed. The most vulnerable are enterococcus and enterococcus faecalis. Spores of sulfite-reducing clostridium are resistant to photodynamic action but, to provide drinking water, clostridium may be removed by sedimentation and filtration. The dependence of photodisinfection on treatment conditions was studied. It was found that sunlight along with artificial visible light sources may be used for photodynamic water treatment. The photodynamic step, arranged with artificial visible light source, was included in a process of conventional water purification instead of chlorine disinfection. Preliminary pilot testing have shown that photodynamic water disinfection in combination with coagulation, sedimentation, sand and carbon filtrations (latter-to remove sensitizer and products of its photolysis) provides water of high quality, free of bacteria and chemicals as well.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2007.04.064 | DOI Listing |
Objective: This study aims to investigate the correlation between exposure to disinfection byproducts of chlorination and preterm birth (PTB) through evidence-based medicine Meta-analysis and Mendelian randomization (MR) analysis.
Study Design: Meta-analysis was conducted on 17 studies involving 1,251,426 neonates, revealing a higher risk of PTB with exposure to total trihalomethanes (TTHMs) and chloroform. Mendelian randomization (MR) analysis confirmed a causal relationship between chlorides and PTB.
Nat Commun
January 2025
University of California, Santa Cruz, Santa Cruz, CA, USA.
Antibiotics can trigger antimicrobial resistance and microbiome alterations. Reducing pathogen exposure and undernutrition can reduce infections and antibiotic use. We assess effects of water, sanitation, handwashing (WSH) and nutrition interventions on caregiver-reported antibiotic use in Bangladesh and Kenya, longitudinally measured at three timepoints among birth cohorts (ages 3-28 months) in a cluster-randomized trial.
View Article and Find Full Text PDFChemosphere
January 2025
University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. Electronic address:
The degradation of rubber seal (RS), particularly ethylene-propylene-diene (EPDM), in the drinking water networks has been confirmed, yet the role of RS as a disinfection by-product (DBP) precursor remains unknown. This study provides explicit proof of the formation of halogenated disinfection by-products (X-DBPs) from RS in chlorinated drinking water within water supply systems. Over time, exposure to chlorinated water ages RS, releasing high levels of organic compounds, which act as DBP precursors.
View Article and Find Full Text PDFWater Res
December 2024
MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China. Electronic address:
In aqueous environments, microplastics (MPs) undergo photoaging, releasing dissolved organic matter (DOM). Disinfection byproducts (DBPs) formation from natural organic matter (NOM) phototransformation has been reported. However, the impact of NOM on the photoaging of MPs (especially nitrogen-containing MPs) and subsequent nitrogenous DBPs (N-DBPs) formation remains unknown.
View Article and Find Full Text PDFWater Res
January 2025
School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia. Electronic address:
Chlorine, the most widely utilized disinfectant for drinking water globally, has recently been implicated in facilitating the spread of antibiotic resistance genes (ARGs), raising concerns about its underestimated environmental and ecological risks. However, given the current fragmented research focus and results, a comprehensive understanding of the potential mechanisms and influencing factors behind chlorination-promoted ARGs transmission in drinking water systems is crucial. This work is the first to systematically review the variations in abundance, transmission mechanisms, influencing factors, and mitigation strategies related to ARGs during the chlorination process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!